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Abstract—While the state-of-the-art network embedding ap-
proaches often learn high-quality embeddings for high-degree
nodes with abundant structural connectivity, the quality of the
embeddings for low-degree or tail nodes is often suboptimal
due to their limited structural connectivity. While many real-
world networks are long-tailed, to date little effort has been
devoted to tail node embeddings. In this paper, we formulate the
goal of learning tail node embeddings as a few-shot regression
problem, given the few links on each tail node. In particular,
since each node resides in its own local context, we personalize
the regression model for each tail node. To reduce overfitting
in the personalization, we propose a locality-aware meta-learning
framework, called meta-tail2vec, which learns to learn the regres-
sion model for the tail nodes at different localities. Moreover, to
address the heterogeneity in nodes and edges on heterogeneous
information networks (HINs), we further extend the proposed
model and formulate meta-tail2vec+, which is based on a dual-
adaptation mechanism to facilitate the locality-aware tail node
embeddings on HINs. Finally, we conduct extensive experiments
and demonstrate the promising results of both meta-tail2vec and
its extension meta-tail2vec+.

Index Terms—Meta-learning, locality-aware, tail node embed-
dings, homogeneous and heterogeneous networks.

I. INTRODUCTION

NETWORK structures are prevalent in various real-world
scenarios, such as social networks, citation networks and

biological networks. On these networks, many problems can
be formulated as node classification and link prediction, which
rely heavily on effective network representations. While tradi-
tional approaches mainly focus on manual feature engineering,
recent network embedding [1] and graph neural networks
[2] have become the de facto state-of-the-art approaches for
learning representations of network data. Specifically, these
methods aim to encode network structures by mapping nodes
into a low-dimensional vector space, in which the structural
information is preserved.

Despite their success, a critical question remains open: the
performance of most existing embedding methods depends on
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Fig. 1: Distribution of node degree and its relationship to the
quality of embedding vector on the Wiki network.

the availability of abundant structural connectivity. Although
this is not a concern for medium-to-high degree nodes with
many links to other nodes, low-degree nodes with very few
links often suffer from the problem of limited structural
information. As a result, the embedding vector for a low-
degree node cannot be accurately learned from its structural
information. Generally, the node degrees vary considerably
across the network and are not uniformly distributed. In
many networks, the degrees approximately follow the power-
law distribution [1]. For instance, Fig. 1(a) illustrates the
degree distribution of the Wiki network [3], a network of
interlinked Wikipedia pages belonging to 19 categories. The
node degrees are characterized by a long-tailed distribution,
where a significant fraction of the nodes belong to the tail
with very low degrees. The embeddings of these tail nodes
are unsatisfactory, as demonstrated by the performance of node
classification in Fig. 1(b). Particularly, when the node degree
decreases, the performance also decreases due to less structural
information.

Unfortunately, most current network embedding or graph
neural network approaches overlook the tail nodes, by re-
garding all nodes uniformly and adopting the same learning
approach despite their diverse degrees. For example, Deep-
Walk [1] samples node sequences from the network and feeds
them to the same skip-gram model without paying special
attention to low-degree nodes, while graph neural networks
[2], [4] derive the embedding of a target node by aggregating
its neighboring nodes in the same manner without adapting to
the degree of the target node. Not surprisingly, the tail nodes
with very few links are usually under-modeled than those
with many links. This inspires us to investigate the following
research problem: How do we learn effective embedding
vectors for tail nodes from limited structural information?

The problem is challenging for three reasons. (1) The tail
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nodes have very few links, which provide scarce structural
information. The issue is especially severe when only network
structures are available, without access to additional side
information such as item contents in recommendation [5] and
morphological information in word embedding [6]. (2) Each
node is associated with a unique locality, and thus the embed-
ding model should ideally become specialized from node to
node. However, in practice this presents a dilemma: adapting
to each node often causes overfitting, which is particularly
serious for tail nodes with very few observed links. (3) When
it comes to heterogeneous information networks (HINs) [7],
the node heterogeneity further complicates the capture of
limited structural information on tail nodes. That is, we need to
simultaneously account for both the locality and heterogeneity
of tail nodes given scarce structural information.

To address the first challenge of scarce structural informa-
tion, we exploit the embeddings of nodes with a sufficient
number of links (i.e., non-tail nodes and we call them head
nodes hereafter). Considering any network embedding model,
the learned embedding vectors of head nodes tend to be
more accurate than those of tail nodes, due to more abundant
structural information associated with head nodes. Thus, we
treat the embeddings of head nodes as our oracle embeddings,
which can be leveraged to train a regression model capable
of reconstructing the oracle embeddings in a self-supervised
manner. Using the regression model, our goal is to predict
new embeddings for tail nodes such that their quality can
approach that of the oracle embeddings. To further ensure that
the regression model fits both head and tail nodes, we propose
to perform link dropouts on head nodes, to simulate the limited
structural information of tail nodes.

To address the second challenge of adapting to the locality
of each node, we resort to the meta-learning paradigm [8], [9],
for its ability of adapting to new learning tasks (also called
episodes) by learning a transferable prior common to different
tasks. Known as meta-learning, it learns how to learn a model
in the form of a prior, contrary to learning one model for all
tasks (which cannot differentiate tasks) or individual models
for each task (which may overfit to each task). In particular, we
adopt the meta-learning framework MAML [9], which has the
advantage of quick adaptation in a model-agnostic manner and
has achieved considerable success in various problem domains
[10], [11].

To realize the above insights in our scenario, we construct
locality-aware tasks: one task for each node to represent its
locality, and learn a regression prior that can be easily adapted
to each task or locality. In each task, given a query node, we
aim to predict its embedding vector after training on a set
of support nodes. While the support set is often randomly
sampled, for locality-aware learning, we propose to use the
neighbors of the query node as the support nodes, assuming
that the localities of neighboring nodes are similar. More
specifically, during meta-training, each task involves a head
node as the query, with the objective of learning a regression
prior such that the prior can be adapted by the support nodes
to accurately reconstruct the oracle embeddings of the query.
During meta-testing, each task involves a tail node as the
query, and the learned prior will be adapted by the support

nodes before predicting a better embedding vector for the
query. To make the meta-training and meta-testing tasks more
similar, we again adopt link dropouts to sample only a few
neighbors as the support set during meta-training, to simulate
meta-testing tasks on tail nodes. Essentially, each task is a
few-shot regression problem.

To address the third challenge of node heterogeneity on
HINs, building upon the preceding two mechanisms of oracle
embedding reconstruction and locality adaptation, we further
account for and differentiate the node types. First, for oracle
embedding reconstruction, we extend the regression model
by further distinguishing neighboring nodes in terms of their
types. Thus, the node heterogeneity can be integrated into
the reconstruction process. Second, for preserving the local
contexts of each node, nodes of the same type tend to share a
common “schema” of locality adaptation. Thus, to absorb the
heterogeneity into localization, we propose a dual-adaptation
mechanism for nodes on a HIN w.r.t. both their node type
and locality, respectively performing the type- and node-level
adaptations. For type-level adaptation, we modulate the prior
w.r.t. the node type of a target node by scaling and shifting
operations [12], [13]. For node-level adaptation, we still resort
to the same meta-learning (i.e., MAML) paradigm to capture
the individual locality of each node.

In summary, we propose a novel approach meta-tail2vec and
its extension on HINs meta-tail2vec+, which learn to learn tail
node embeddings in a few-shot regression setting. The models
operate in an embedding-agnostic manner, which is flexible
to work with any network embedding model. Specifically,
our contributions can be summarized as follows. (1) We
formulate the novel problem of learning tail node embeddings
on networks, and cast it as an instance of regression via oracle
reconstruction. (2) We propose a base regression model hinged
on the concept of link dropouts, and formulate the locality-
aware tasks on networks in a meta-learning framework, which
allows for easy local adaption of the base model. (3) We
further extend the proposed model to HINs and formulate
meta-tail2vec+, hinged on a dual-adaptation mechanism for
both type- and node-level adaptations, to capture both the
heterogeneity and locality of a target node. (4) We conduct
extensive experiments on five public datasets, including three
homogeneous graphs and two HINs, in which both meta-
tail2vec and meta-tail2vec+ achieve significant performance
gains.

A preliminary version of this paper has been published as a
conference paper in CIKM’2020 [14]. We summarize the main
changes as follows. (1) Introduction: We reorganized Section
I to highlight the motivation, challenges, and insights to cope
with HINs for tail node embeddings. (2) Related Work: We
reviewed more related work especially on HINs in Section
II, to present a detailed background on HINs. (3) Model:
We extended meta-tail2vec to meta-tail2vec+ in Section IV-D,
based on heterogeneity-aware neighborhood aggregation and
a novel mechanism of dual-adaptation. (4) Experiments: We
conducted extensive experiments to evaluate meta-tail2vec+ in
Section VI, and analyzed the results in detail.
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II. RELATED WORK

Network embedding [15] has been popular for graph repre-
sentation learning, and various approaches have been proposed
to generate structure-preserving node embeddings, such as
random walks [1], [16], matrix factorization [17], [18], node
proximity [19], and motifs or subgraphs [20], [21]. Graph
neural networks (GNNs) [2], [4], [13] emerge as another pow-
erful tool for representation learning, which are designed to
integrate both node features and network structures. To capture
the heterogeneity on HINs, an increasing number of recent
studies investigate the heterogeneous network embeddings [7],
[22], which usually embody the model by capitalizing on type-
based meta-patterns, such as metapath [23], [24], metagraph
[21], [25], etc. The widespread application of GNNs opens
great opportunities for representation learning on HINs, thus
several contributions of HIN-based GNNs [26]–[28] have also
been devoted.

However, little attention has been paid to the learning of
tail node embeddings. While several recent studies explore
various techniques to deal with sparse networks, such as
using dual dropouts to avoid overfitting [29], adopting the
adversarial principle to learn the underlying distribution [30],
[31] and leveraging the global network structure [32], they
aim to increase the overall robustness and do not specifically
target the most vulnerable tail nodes. Meanwhile, some studies
deal with sparse observations in other domains, such as cold-
start recommendation [5], [33], [34] and rare word embedding
[6], [10], [35]. However, these methods rely on additional
side information, such as item contents or word morphology.
Though Tail-GNN [36] also addresses the same problem, it
cannot cope with the tail node embeddings on heterogeneous
graphs.

Several recent studies [37], [38] investigate the degree-
related discrimination of nodes, and process nodes differently
w.r.t. their degrees. However, they still focus on the overall
performance, and do not particularly aim to improve the
performance of tail nodes, which belong to a more challenging
group. There have also been explorations of degree-related
fairness learning on graphs [39]–[41], a concept distinct from
our tail node embedding task. They primarily aim to achieve
fair predictions across different groups by treating node de-
grees as a sensitive attribute. These studies typically employ
pre-defined fairness metrics to balance loss discrepancy [39],
accuracy discrepancy [40], or prediction discrepancy [41]
across groups. In contrast, our work on tail node embedding
specifically focuses on improving the performance of nodes
with low degrees, rather than reducing discrepancies across
groups. Besides, imbalanced classification has also attracted
much interest in several research areas such as vision [42]–
[44] and graph [45]–[47]. However, imbalanced classifica-
tion in graphs aims to improve the performance of minority
classes, which are characterized by having fewer labeled
data compared to the majority classes. In contrast, tail node
embedding aims to enhance the performance of tail nodes,
which are characterized by their low degree rather than class
membership.

To address the general problem of learning from less

data, particularly in few-shot scenarios, meta-learning [9],
[48], [49] has demonstrated considerable success in several
domains including vision [48], language [10], [50] and data
mining [11], [51]. These methods typically learn some prior
knowledge from an abundant number of related tasks, and
adapt the prior to new tasks with limited data. Few-shot
learning on graphs has also been explored, including node
classification on a single large graph [52], [53], and node or
graph-level classification on multiple graphs [54], [55]. These
methods primarily aim to achieve favorable performance on
novel classes with limited labeled data, rather than to address
the improvement of low-degree nodes. To the best of our
knowledge, our approach is the first use of meta-learning for
tail node embedding.

III. PROBLEM CASTING AS REGRESSION

We begin with the problem statement, and cast it as an in-
stance of regression based on the idea of oracle reconstruction.

A. Problem Statement

In this paper, we focus on tail node embeddings for both
homogeneous and heterogeneous networks. Without loss of
generality, we first give a unified definition for both of them.
Consider a graph G = (V, E , T ,R), where V is the set of
nodes, E is the set of edges, and T and R are the node and
edge types, respectively. In particular, there exist a function
φV : V → T to map a node v ∈ V to its node type φV(v) ∈ T ,
and a function φE : E → R to map an edge e ∈ E to its
edge type φE(e) ∈ R. For a homogeneous graph, we have
|T | = 1 and |R| = 1; while for a heterogeneous graph, we
have |T |+ |R| > 2.

Let Nv denote the set of neighbors of node v ∈ V , and the
size of the neighbor set |Nv| is known as the degree of v. In
particular, v is a low-degree or tail node if its degree is no
larger than some constant k. That is, the set of tail nodes is
Vtail = {v ∈ V : |Nv| ≤ k}. We call the remaining nodes head
nodes: Vhead = {v ∈ V : |Nv| > k}.

Given any base network embedding model ϕ, we denote
hv = ϕ(G, v) ∈ Rd as the d-dimensional embedding vector of
node v. Since the tail nodes have scarce structural features
due to their small degrees, presumably their embeddings
{hv : v ∈ Vtail} are inferior in quality to the embeddings
of the head nodes O = {hv : v ∈ Vhead}. Our goal is to learn
new embedding vectors for the tail nodes {ĥv : v ∈ Vtail},
such that their quality is improved to eventually approach the
quality of the head nodes’ embeddings O. Note that our setup
is embedding-agnostic, i.e., any embedding model ϕ can be
used as the base embedding model.

B. Regression via Oracle Reconstruction

A major challenge of learning tail node embeddings lies in
the limited structural information. That is, each tail node only
has a few observed neighbors. Without assuming additional
side information (e.g., item contents in recommendation sys-
tems), we take advantage of the high-quality embeddings of
head nodes, and investigate how high-quality embeddings can
be similarly constructed for the tail nodes.
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Fig. 2: Training a regression model to predict node embed-
dings reconstructed from neighboring nodes.

Specifically, we propose to cast the problem as an instance
of regression. We train a regression model F on the head
nodes, treating their embeddings O, which are learned by
the base embedding model ϕ, as the oracle embeddings
w.r.t. ϕ. Given any head node v, F (v; Θ) outputs a new
predicted embedding ĥv to approximate its oracle embedding
hv ∈ O. In other words, F is expected to reconstruct the
oracle embeddings O of the head nodes, regardless of how
the base embedding model works. Formally, we optimize the
parameters Θ of the regression model F by

argminΘ
∑

v∈Vhead
∥F (v; Θ)− hv∥2. (1)

Note that here we use the Euclidean norm ∥·∥, although other
distance functions can also be adopted.

After training, F can be applied to the tail nodes as test
instances, so as to predict their unknown oracle embeddings,
supposedly attaining similar quality as O. The improved
embedding vectors of tail nodes can be subsequently used as
representations for downstream tasks such as node classifica-
tion and link prediction for better performance.

IV. META-LEARNED FEW-SHOT REGRESSION

In this section, we first introduce a regression model to pre-
dict new embedding vectors for tail nodes, then personalize the
regression for each node by formulating node-wise locality-
aware tasks, and present the overall meta-learning approach
meta-tail2vec. Furthermore, we extend meta-tail2vec to meta-
tail2vec+ to handle the heterogeneity on HINs.

A. Embedding Regression Model
As shown in Fig. 2, we materialize the regression model

F (v; Θ) to reconstruct the oracle embedding hv of a node v,
with the widely used Multi-Layer Perceptron (MLP):

ĥv = F (v; Θ) = W2 · σ(W1xv + b1) + b2, (2)

where xv ∈ Rd1 is the input feature vector of node v. The
parameters of the MLP include W1 ∈ Rd2×d1 , W2 ∈ Rd×d2 ,
b1 ∈ Rd2 and b2 ∈ Rd, i.e., Θ = {W1,W2,b1,b2}. σ(·)
is an activation function, and we adopt ReLU in this paper.
Note that the size of the output layer is d, the same as the
embedding dimension of the nodes. For a node v, the input to
the MLP is a feature vector xv . In the following, we discuss
the formulation of the input feature vector.

1) Neighborhood Aggregation: On a network, a node v is
characterized by its context or its neighbors set, Nv . Naturally,
we can aggregate the embeddings of the neighbors to construct
its input feature xv , an idea similar and central to many GNNs
[2], [4], as

xv = AGGR({hi : i ∈ Nv}), (3)

where AGGR(·) is an aggregator, e.g., mean pooling. Gener-
ally, we can also aggregate nodes within m hops of v, as
shown in Fig. 2. Defining the m-hop neighbor set of v as

N (m)
v =

⋃
i∈N (m−1)

v
Ni, (4)

and N (1)
v ≡ Nv , the input feature xv can be constructed as

xv = AGGR({hi : i ∈ N (1)
v ∪N (2)

v ∪ . . . ∪N (m)
v }). (5)

Note that, although advanced strategies such as tree-LSTMs
[56] and graph convolutions [2] may be employed to aggre-
gate multiple hops, we adopt the simple mean pooling to
demonstrate the effectiveness of our approach. In this specific
strategy, the dimension of the input feature vector xv is the
same as the node embedding dimension, i.e., d1 = d.

2) Link Dropouts: One major flaw of such an input vector
xv is that the head nodes in training and the tail nodes
in testing possess very different neighbor sets in terms of
their abundance, i.e., |Nv| ≫ |Nu| for some v ∈ Vhead and
u ∈ Vtail. To make the training and testing nodes more similar,
we perform link dropouts on the head nodes. Specifically,
we randomly sample only k neighbors of each head node
for aggregation, to simulate the tail nodes. That is, given
the sampled neighbors Ñv of a head node v, for one-hop
aggregation we have

xv = AGGR({hi : i ∈ Ñv}), ∀v ∈ Vhead. (6)

The idea of link dropouts draws an interesting parallel
to DropoutNet [33]. However, we do not assume any side
information employed in DropoutNet like user contents, which
means our problem is more challenging and we can only drop
the structural information partially.

B. Locality-Aware Few-Shot Regression Tasks

When applying the regression model on all nodes, it ignores
the unique locality of each node. As nodes reside across
different localities on the network, assuming one global model
to fit all nodes is unrealistic. At the other extreme, learning
an individual model for each node, including the popular pre-
training and fine-tuning strategy [57], is likely to cause severe
overfitting due to the limited structural information at the
locality of each tail node.

1) Locality-Aware Support Sets: To address the challenge
of adapting to the locality of each node, we resort to the
episodic meta-learning paradigm [8], [9]. The framework con-
sists of many similar-natured learning tasks, divided into meta-
training and meta-testing tasks. While each task is an instance
in the meta-learning process, each task itself is a learning
problem consisting of support and query sets (representing
the usual sense of training and testing data, respectively). The
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Fig. 3: Overall framework of our locality-aware tail node embedding model meta-tail2vec. (Best viewed in color.)

goal of meta-learning is to extract prior knowledge common
to all tasks in meta-training, such that the knowledge can be
quickly adapted to new tasks in meta-testing. In other words,
it learns how to learn a task in the form of a common prior,
instead of directly learning each task.

In our context, each task represents the unique locality of a
node. At the task level, given a query node, we aim to predict
its embedding vector after training on a set of support nodes.
At the meta-learning level, we learn a prior regression model
F parameterized by Θ from the meta-training tasks where the
query of each task is a head node, and further adapt the prior
to the learning of new tasks in meta-testing where the query of
each task is a tail node. However, in traditional meta-learning
tasks [9], [52], the support set for a query is randomly sampled.
In such random sampling, the support set is not related to
the query, and thus cannot reflect the unique locality of each
query node. To generate locality-aware tasks, we propose to
use the neighbors of the query node as the support nodes.
The assumption is that the localities of neighboring nodes are
similar, and thus training on these support nodes would be
also applicable to the query node which lies in the vicinity of
the support nodes. In other words, in each task, the support
and query nodes are coupled based on their locality.

2) Formulation of Few-Shot Tasks: As the neighbor sets of
head and tail nodes differ vastly in size, a meta-training task
with a head node as the query has many support nodes, while a
meta-testing task with a tail node as the query has few support
nodes. To make the tasks more similar, we again adopt link
dropouts by only sampling k neighbors as the support set for
meta-training tasks to simulate meta-testing tasks. Thus, each
task becomes a few-shot (up to k shots) regression problem,
to predict the embedding vector of a query node from a few
(up to k) support nodes.

We illustrate the task formulation with an example. As
shown in Fig. 3(a), assuming k = 3, v and u is a head
and tail node, respectively. On the one hand, the head node
v will be used to formulate a meta-training task: v itself
will be the query node, whereas we sample k nodes from
v’s neighbors Nv = {a, b, c, d, e}, to form the support set

Ñv , say, Ñv = {a, b, e}. On the other hand, the tail node u
will be used to formulate a meta-testing task: u itself will be
the query node, whereas we simply take all of u’s neighbors
Nu = {x, y, z} as the support set. More example tasks are
illustrated in Fig. 3(b).

Formally, for each head node v, we define a meta-training
task Tv = (Sv, qv) where Sv = {(i,hi) : i ∈ Ñv} is the
support set, and qv = (v,hv) is the query. For each tail node
u, we define a meta-testing task Tu = (Su, qu) where Su =
{(i,hi) : i ∈ Nu} is the support set, and qu = (u, ?) is the
query, where the embedding vector of u is unknown and to be
predicted. Thus, the set of all meta-training tasks is Ttrain =
{(Sv, qv) : v ∈ Vhead}, and the set of all meta-testing tasks is
Ttest = {(Su, qu) : u ∈ Vtail}.

In practice, we further ensure that all nodes in the support
sets are head nodes, so that they all associate with an oracle
embedding for adaptation to the regression model. Specifically,
in meta-training, we only sample head nodes from the neigh-
bors as the support; in meta-testing, we filter tail nodes from
the support. In the rare case that all of a tail node’s neighbors
are also tail nodes, we will not attempt to improve its original
embedding.

C. Meta-Learning of Tail Node Embeddings

We employ MAML [9] for the meta-learning of tail node
embeddings, which is capable of learning a prior Θ for any
model using gradient-based optimization. In our case, the prior
is the embedding regression model F , parameterized by Θ.
Different from the simple pre-training of a model, the prior Θ
is learned in such a way that Θ can be quickly adapted to a
new task by performing just one or a few gradient updates on
the support set of the new task. The model Θ′ adapted from
the prior Θ, is a local model for the query node in the same
task.

More specifically, in our meta-training, consider a task Tv =
(Sv, qv). As shown in Figs. 3(b) and (c), the prior Θ itself
is not directly updated or optimized by the support set Sv .
Instead, it will be adapted by Sv to produce a local model
Θ′

v for the query v, through one or a few gradient updates
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w.r.t. Sv’s loss. The adapted local model Θ′
v will be applied

to the query v to predict an embedding vector ĥv , so that the
prior Θ can be updated by minimizing the task loss, i.e., the
distance between the predicted embedding ĥv and the oracle
embedding hv of query node v.

Formally, let the loss of the prior on the support set Sv be

LSv
(Θ) =

∑
(i,hi)∈Sv

∥F (i; Θ)− hi)∥2. (7)

The prior Θ will be adapted by Sv by one (or a few) gradient
updates to generate a local model Θ′

v for the task Tv , as,

Θ′
v = Θ− α

∂LSv (Θ)
∂Θ , (8)

where α is the learning rate for the adaptation. Afterwards, the
local model Θ′

v will be applied on the query v, to calculate
the task loss using the query qv:

Lqv (Θ
′
v) = ∥F (v; Θ′

v)− hv∥2. (9)

Subsequently, the prior Θ can be updated during meta-training
by minimizing the query-based total loss of all meta-training
tasks. Given the set of meta-training tasks Ttrain, we optimize
the following to obtain the optimal prior:

argminΘ
∑

Tv=(Sv,qv)∈Ttrain
Lqv

(
Θ− α

∂LSv (Θ)
∂Θ

)
. (10)

Furthermore, in meta-testing, consider a task Tu = (Su, qu).
The prior Θ, learned from meta-training, will be adapted on the
support set Su to produce a local model Θ′

u in the same way as
Eq. (8). And Θ′

u will be simply applied on the query u, which
is a tail node, to predict a new embedding ĥu = F (u; Θ′

u) as
the output of meta-tail2vec.

Complexity of data access. As training is performed over
mini-batches of tasks, the time cost of our meta-training
process depends on the total number of tasks N passed
through, where each task contains up to k support nodes
and the embedding of each node is aggregated from m-hop
neighbors. Thus, the overall complexity is O(Nknm), where
n is the average degree of nodes. Typically m is a small
constant such as 1 or 2, and k is also small by the definition
of tail nodes. Furthermore, it is also common to perform
neighborhood sampling [4] during the m-hop aggregation, and
thus the average degree n is also effectively restricted to a
constant. Note that the complexity analysis here is conducted
from the perspective of data access. To provide a more compre-
hensive understanding, we will extend this analysis to include
the complexity associated with representation computation in
Sect. IV-E.

D. Extension to HINs: meta-tail2vec+

For tail node embeddings on heterogeneous graphs, we
further extend meta-tail2vec onto HINs to cope with the
heterogeneity, and propose meta-tail2vec+. We follow the
same paradigm of meta-tail2vec for tail node embedding on
HINs, but introduce improvements to the two main modules,
i.e., embedding regression based on neighborhood aggregation,
and locality-aware meta-learning, to handle the heterogeneous
types on HINs. First, for the embedding regression of a target

node, the types of its m-hop neighbors are taken into consider-
ation to discriminate their different roles. Second, for locality-
aware meta-learning, we propose a dual-adaptation mechanism
that extends the node-level adaption with an additional type-
level adaption.

1) Heterogeneity-Aware Neighborhood Aggregation: On a
HIN, each node is structurally characterized by its context
(e.g., neighbors within m hops). Particularly, neighboring
nodes of different types usually contribute differently, thus
requiring non-uniform treatment w.r.t. their types during neigh-
borhood aggregation. As a consequence, different from Eq. (5)
for homogeneous graphs, given a target node v on a HIN,
we first perform a type-wise aggregation on its neighboring
nodes of the same type τ to obtain xτ

v . Then, we aggregate
all the types to generate a heterogeneity-aware feature vector
x+
v ∈ Rd1 for v, which can serve as the input for the

embedding regression model in Eq. (2). Formally, the input
feature vector x+

v of node v can be calculated as

x+
v = AGGR({Wτxτ

v : ∀τ ∈ T }), (11)
where xτ

v = AGGR({hi : i ∈ Nm
v ∧ φV(i) = τ}). (12)

Here τ ∈ T is a node type, Nm
v = N (1)

v ∪ N (2)
v ∪ . . . ∪

N (m)
v is the set of v’s neighboring nodes within m hops, and

ΘT = {Wτ ∈ Rd1×d1 : ∀τ ∈ T } is the set of learnable
weights across all the types T . Under this formulation1, the
heterogeneity of the neighboring nodes is captured, thereby
characterizing the heterogeneous semantics of the target node.

Subsequently, we also utilize the same regression model in
Eq. (2) to further materialize few-shot regression, which will
be illustrated in Sect. IV-D2.

2) Dual-Adaptation based Few-Shot Regression: As dis-
cussed in Sect. IV-B, we construct a group of meta-learning
tasks for locality-aware adaptation. Compared to homoge-
neous graphs, on a HIN it is crucial to also account for
the heterogeneity in the adaptation mechanism. Naturally, the
node types should be taken into account when constructing a
meta-learning task, to facilitate a more consistent adaptation
from the support set to the query. The type-aware tasks are
further equipped with a dual-adaptation mechanism, which are
adapted not only at the node level to tailor to the tail nodes,
but also at the type level to suit different types of tail nodes.

Type-aware task construction. First, we leverage nodes of
the same type to build the support and query set in each meta-
learning task, based on the intuition nodes of the same type
tend to share the same role or underlying pattern. Thus, the
support set that shares the same node type with the query could
provide a more consistent reference for the model adaptation.

Formally, for each head node v ∈ Vhead on a HIN, we define
a meta-training task T+

v = (S+
v , q+v ) such that S+

v = {(i,hi) :
i ∈ Ñv∧φV(i) = φV(v)} is the support set, and q+v = (v,hv)
is the query. That is, all the nodes in support set S+

v and query
q+v share the same type, i.e., φV(v). Similarly, for a tail node
u ∈ Vtail, we define a meta-testing task T+

u = (S+
u , q+u ), where

1Only aggregation by node types are illustrated here, while it is also possible
to extend to edge types (if any) by aggregating neighboring nodes based on
their edge type to the target node. For brevity, we only focus on the node
types in the technical discussion.
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S+
u = {(i,hi) : i ∈ Nu ∧ φV(i) = φV(u)} is the support

set, and q+u = (u, ?) is the query. In both meta-training and
testing tasks, as the support set is sampled from the one-
hop neighbors for locality awareness (see Sect. IV-B1), it
could lead to the scenario where all one-hop neighbors belong
to different types from the target node. In such a case, we
can extend the definition of support set to include two-hop
neighbors. Finally, we can construct a set of meta-training
tasks T+

train = {(S+
v , q+v ) : v ∈ Vhead}, and a set of meta-testing

tasks T+
test = {(S+

u , q+u ) : u ∈ Vtail}.

Type-level adaptation. On a homogeneous graph, recall that
we only adapt the prior Θ into a local model Θ′

v for each task
Tv , which is a node-level adaptation as we attempt to adapt
the task to the locality of its query node v. However, given
type-aware meta-learning tasks on a HIN, it is insufficient to
perform only node-level adaptation, which overlooks the type
heterogeneity across meta-learning tasks. To address this, we
propose a dual-adaptation mechanism for type-aware meta-
learning tasks at both the type and node levels.

We start with the type-level adaptation. MAML could
potentially be utilized at the type level too, although it might
prove challenging to apply in this context. Fundamentally,
MAML aims to transfer a prior learned from a “base set” to a
“novel set”. In the vanilla meta-tail2vec, the base set involves
the head nodes in meta-training, and the novel set involves
the tail nodes in meta-testing. However, when dealing with
the heterogeneous types, it is unclear what could be the base
set and novel set, since the number of types is often small
and they are known in advance on a typical heterogeneous
graph. Furthermore, to construct the support sets, some labeled
data are still needed. In the vanilla meta-tail2vec, the high-
quality embeddings of the head nodes are treated as the oracle
embeddings, providing ground-truth labels. In contrast, given
heterogeneous types, there are no clear oracle embeddings
associated with a type. Hence, MAML is not an ideal choice
here. Instead, we resort to Feature-wise Linear Modulation
(FiLM) [12], [13] for the type-level adaptation, which does
not require a base set and a novel set, or the construction of
support sets.

Specifically, given a type-aware task T+
v = (S+

v , q+v ), we
first apply a FiLM layer to customize it to local types associ-
ated with the task. More concretely, the FiLM layer modulates
the parameters of the shared regression model in Eq. (2),
conditioned on the type signature of the task. Modulating a
shared model is a better choice than fitting individual models
to distinct type signatures. On one hand, sharing a common
regression model across tasks can capture the generality, while
the modulation conditioned on type signatures empowers the
type-level adaptation to capture heterogeneous semantics on
a HIN. On the other hand, fitting individual models not only
ignores the commonality among tasks, but also tends to overfit
to individual type signature and incurs a significant overhead.

Common modulation operators include scaling and shifting,
which are applied to all the learnable parameters of the regres-
sion model, namely, W1,W2,b1 and b2. In the following, we
take W1 as an example to explain the modulation mechanism,
while the other parameters (W2,b1 and b2) follow a similar

process.
For the weight matrix W1 ∈ Rd2×d1 in Eq. (2), we

transform it into W1,v ∈ Rd2×d1 for the task T+
v , as follows.

W1,v = W1 ⊙ [(γW1
v + 1)×d2

]⊤ + [(βW1
v )×d2

]⊤, (13)

where γW1
v and βW1

v ∈ Rd1 are scaling and shifting oper-
ators to modulate W1 into Wv

1 for adaptation, the notation
[(x)×n] ∈ R|x|×n represents a matrix of n columns all of
which are identical to the vector x, and ⊙ denotes element-
wise multiplication. Here the scaling and shifting operators
γW1
v and βW1

v are not directly learnable, but are calculated
by a secondary neural network [58] conditioned on the type
signature of the task T+

v to enable type-level adaptation, as
follows.

γW1
v = LEAKYRELU(Wγ

W1
ov +Uγ

W1
pv), (14)

βW1
v = LEAKYRELU(Wβ

W1
ov +Uβ

W1
pv), (15)

where Wγ
W1

, Wβ
W1

, Uγ
W1

and Uβ
W1

∈ Rd1×|T | are learnable
weights. The input ov and pv represent the type signature of
T+
v . Specifically, ov ∈ R|T | is a vector with each dimension

corresponding to the number of neighboring nodes of each
type (within m hops); pv ∈ R|T | is an indicator vector in
which only the dimension corresponding to φV(v) is one
while the others are zeros. Together, ov and pv characterize
the distribution of node types associated with the task T+

v ,
on which the modulation is conditioned to enable type-level
adaptation. Lastly, 1 ∈ Rd1 is a vector filled with ones
to ensure the scaling factors centered around one. Likewise,
W2,b1 and b2 can be modulated into W2,v,b1,v and b2,v

for the task T+
v = (S+

v , q+v ), respectively.
Finally, in a type-aware task T+

v on a HIN, we can predict
the embedding of the query v, denoted by ĥ+

v ∈ Rd, by
rewriting Eq. (2) with modulated regression parameters:

ĥ+
v = F (v; Θv) = W2,v · σ(W1,vx

+
v + b1,v) + b2,v, (16)

where Θv = {W1,v,W2,v,b1,v,b2,v} represents the regres-
sion parameters tailored to the task T+

v . Note that Θv are not
directly learnable, as they are generated by the FiLM layers
with learnable parameters ΘFiLM = {Wγ

∗ ,W
β
∗ ,U

γ
∗ ,U

β
∗}.

Node-level adaptation. We employ the same MAML-based
meta-learning paradigm to localize the prior w.r.t. the query
v in a task T+

v , in the same spirit of Eq. (10). The main
difference lies in what constitutes our prior on a HIN. In
Eq. (10), the prior Θ boils down to the learnable parameters
of the embedding regression model. In the extended meta-
tail2vec+, the parameters are expanded in order to handle
the heterogeneity on a HIN. The additional parameters come
from two sources: (1) Our heterogeneity-aware neighborhood
aggregation in Eq. (11) requires a type-specific weight matrix
for each type, i.e., ΘT = {Wτ : ∀τ ∈ T }; (2) Our FiLM layer
for type-level adaption involves several secondary networks to
generate the modulations for the shared regression model, i.e.,
ΘFiLM = {Wγ

∗ ,W
β
∗ ,U

γ
∗ ,U

β
∗}. Hence, in meta-tail2vec+, the

prior would be Θ+ = (Θ,ΘT ,ΘFiLM), which can be optimized
on the set of meta-training tasks T+

train following the same loss
in Eq. (10).
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E. Complexity Analysis
The proposed two models, meta-tail2vec and meta-

tail2vec+, predict refined node embeddings ĥv, ĥ
+
v ∈ Rd as

shown in Eqs. (2) and (16), respectively. Herein, we provide a
comparison of the complexities of these two models, focusing
on the computation of the refined node embeddings, since
the MAML-based framework is common to both models and
would not impact the relative comparison between them.
We highlight that in Sect. IV-C, we have already provided
a complexity analysis for meta-tail2vec from a data access
perspective. Subsequently, we will offer a more in-depth
complexity analysis of these models, from a representation
computation perspective.

meta-tail2vec. Assuming an average degree of n, where each
node’s feature vector xv ∈ Rd1 is aggregated from its m-hop
neighbors as described in Eq. (3), which entails a complexity
of O(nmd1). To further compute ĥv , the two layers in Eq. (2)
contributes a complexity of O(d2 × d1 + d× d2). Hence, the
overall complexity of calculating ĥv is O(nmd1+d2×d1+d×
d2). As xv is aggregated via a simple mean pooling, we have
d = d1 and the overall complexity simplifies to O(nmd1 +
d2 × d1). Typically, m is a small constant (e.g., 1 or 2), and
n is also small per the definition of tail nodes.

meta-tail2vec+. In addition to the calculations in meta-
tail2vec, the extended model on HINs, meta-tail2vec+, re-
quires two further operations: heterogeneous aggregation and
type-level adaptation. On one hand, for meta-tail2vec+ builds
upon the homogeneous aggregation with a complexity of
O(nmd1), while introducing an additional heterogeneity-
aware neighborhood aggregation in Eq. (11). This increases
the complexity to O(nmd1+nmd21) = O(nmd21) because each
neighboring node requires a multiplication with the matrix
Wτ ∈ Rd1×d1 based on the type τ . On the other hand,
for type-level adaptation, meta-tail2vec+ needs to modulate
the regression parameters Θ = {W1,b1,W2,b2} into their
localized versions. More precisely, to compute Wv

1 in Eq. (13),
we should first compute γW1

v and βW1
v , which involves com-

plexity of O(d1|T |). Thus, the calculation of Wv
1 has the

complexity of O(d1|T |+d2×d1) after performing the scaling
and shifting. Similarly, the calculation of Wv

2 , bv
1 and bv

2

involves complexity of O(d2|T |+d×d2), O(d2|T |+d2) and
O(d|T |+ d), respectively. Thus, the total complexity of type-
level adaptation is O((d+d1+d2)|T |+d2(d1+d)). As d = d1,
it can be further simplified to O((d1 + d2)|T | + d2 × d1).
Overall, the calculation of ĥ+

v amounts to O(nmd21 + (d1 +
d2)|T |+ d2 × d1).

To summarize, compared to meta-tail2vec, to predict the
node embedding, meta-tail2vec+ increases the complexity by
O(nmd21+(d1+d2)|T |). Considering that n and m are small
constants, the incremental complexity is primarily related to
the embedding/hidden dimensions d1 and d2, and is linear in
the number of types |T | on the HIN.

V. EXPERIMENTS ON HOMOGENEOUS GRAPHS

In this section, we conduct node classification and link
prediction on three public benchmark homogeneous graphs,
to evaluate the performance of meta-tail2vec.

TABLE I: Summary of homogeneous datasets.
nodes edges classes multi-label tail nodes

Wiki 2,405 17,981 19 No 1,069
Flickr 80,513 5,899,882 195 Yes 9,367
Email 1,005 25,571 42 No 235

A. Experimental Settings

1) Datasets: We conducted experiments on three public
datasets. (1) Wiki [3] is a Wikipedia network, where each node
is a page, and each edge represents the hyperlink between
pages. Each page belongs to one of the 19 categories. (2)
Flickr [1] is a network of users of the photo-sharing service,
where each node is a user, and each edge represents the friend-
ship between users. Every user belongs to one or more interest
groups, such as “scenic photos”. (3) Email [59] is an e-mail
network between members of a European research institution,
where each node is a member, and each edge represents the
communication between members. Every member belongs to
one of the 42 departments. Their statistics are summarized in
Table I. Note that we regarded nodes with 5 or fewer links as
the tail nodes, i.e., {v ∈ V : |Nv| ≤ 5}.

2) Base Embedding Models: Our approach meta-tail2vec is
flexible to work with any embedding model. We experimented
with two broad categories of base embedding models. First,
we employ classic network embedding approaches and graph
neural networks.
• DeepWalk [1]: a pioneering, widely adopted network embed-

ding model, which samples an equal number of paths from
each node, and feeds these paths into a skip-gram model to
learn node embeddings.

• GraphSAGE [4]: a GNN that performs graph convolutions
to aggregate features from neighbors recursively. For node
features, we use node embedding vectors from DeepWalk
and node degrees. We adopt its self-supervised version to
learn the initial base embeddings.

Second, we employ embedding models for sparse networks.
• SDNE [32]: a deep network embedding model that is

robust for sparse networks, by incorporating global network
structures in addition to local structures.

• ARGA [31]: an adversarially regularized graph autoencoder,
which achieves robust embedding by learning the data
distribution of latent codes on the graph.

• DDGCN [29]: a graph convolutional network with a form
of dual dropouts at both the node and edge levels, to more
effectively reduce overfitting on sparse networks.

Setup and parameters. To ensure the base models achieve
their respective optimal performance, we performed a grid
search to tune their parameters (optimal values in italics). For
DeepWalk, we searched the number of walks γ ∈ {5, 10, 20},
walk length t ∈ {40, 100, 150} and window size w ∈ {3, 5}.
For GraphSAGE, we adopted a two-layer architecture, chose
the aggregator from {mean, meanpool, maxpool} and tuned
the dimension of the hidden layer over {32, 64, 128}. For
SDNE, we searched the weight of local structures (as opposed
to global structures) α ∈ {50, 100, 150} and the weight of
reconstruction β ∈ {10, 30, 50}. For ARGA, we tuned the
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dimension of the hidden layer over {16, 32, 64}. For DDGCN,
we tuned the dropout probability p ∈ {0.1, 0.3, 0.5}, and dual-
dropout coefficient α ∈ {0.1, 1, 5}. The optimal parameters
found are generally consistent with the recommended values
in the literature. For all models, the dimension of embedding
vectors is set to 128.

3) Baselines for Tail Node Refinement: We compared with
a series of baselines that are also designed to improve tail node
embeddings.
• Biased walk: As tail nodes are under-represented, we over-

sampled random walks starting from the tail nodes. This
method is only applicable to DeepWalk and GraphSAGE,
since the other base models do not utilize random walks.

• Additive [60] aggregates the embeddings of the neighboring
nodes as the output embedding for a tail node. We also
compared to Additive-2 which aggregates the embeddings
of neighboring nodes within 2-hops.

• a la carte [61] is a further extension of the additive model,
with a transformation through an auxiliary regression task.
Similarly, we also compared to a la carte-2, which aggre-
gates the embedding of 2-hop neighbors.

• Nonce2vec [62] constructs a better initialization with the
additive vectors, and performs another round of training
using the corresponding base embedding model.

• Dropout: Inspired by DropoutNet [33], for each head node
we sampled only k neighbors, which were further fed into
an auxiliary regression task.

Setup and parameters. The goal is to predict new embedding
vectors for the tail nodes by meta-tail2vec and each baseline
refinement method, w.r.t. the initial embedding vectors from
each of the base embedding models.

For biased walk, we doubled the paths starting from the tail
nodes compared to the head nodes. For Additive, a la carte and
Nonce2vec, we used mean pooling as the aggregation function,
which yields better empirical performance than min or max
pooling. For a la carte and Dropout, the auxiliary regression
tasks used the same regression model in our approach. For
Nonce2vec, with DeepWalk, SDNE, and ARGA as the base
embedding models, the improved initialization was directly
used as a pre-training; with GraphSAGE and DDGCN, the
improved initialization was used as nodes’ initial feature
vectors.

For our method meta-tail2vec, we set α, the local learning
rate of adapting to the support set to 0.01, and set the global
meta-learning rate to 0.001. Note that it is typical to employ
a larger local learning rate in order to achieve stable training
[9], [52]. The number of gradient updates during adaptation
was set to 5, noting that few updates such as 1 or 3 give very
close results. In the regression model F , we set the size of
the hidden layer of the MLP to 1024, and aggregated nodes
within 2 hops. We will also analyze the impact of the number
of hops in Sect. V-C.

4) Downstream Applications: We experimented with two
downstream applications on the three homogeneous datasets.

Node classification. We carried out multi-class classification
on Wiki and Email where each node belongs to exactly one
class, and multi-label node classification on Flickr where each

node can belong to one or more classes. Specifically, we
evaluated the classification performance on the tail nodes, after
training a logistic regression classifier on the head. The pre-
dicted embeddings of the tail nodes and the oracle embeddings
of the head nodes were used as their input features for the
classifier, respectively. We adopted microF and accuracy as
the evaluation metrics.

Link prediction. For nodes with 2–6 links, we adopted the
common leave-one-out strategy by first removing a random
link from each of them (which becomes a tail node with 5 or
fewer links). Our goal is to predict the removed link. On the
partial network, we constructed initial embedding vectors us-
ing each base embedding model, and predicted new embedding
vectors for the tail nodes with our method and each baseline
refinement method. For each tail node, we treated the removed
link as a positive candidate, and randomly sampled five other
non-linked nodes as negative candidates. Link prediction was
then formulated as a ranking problem: given a tail node, we
rank its candidates using a learning-to-rank model [63] trained
on the head nodes. Likewise, the predicted embeddings of the
tail nodes and the oracle embeddings of the head nodes were
used as their features, respectively. We adopted the evaluation
metrics of mean reciprocal rank (MRR) and hit ratio at top 1
(Hit@1).

B. Performance Comparison

We present the performance of meta-tail2vec and the base-
lines w.r.t. each base embedding model. As our goal is to
improve tail node embeddings, we mainly focus on comparing
the performance on the tail nodes. Nevertheless, to further
demonstrate that head node embeddings are not adversely im-
pacted, we also investigate the performance on the head nodes.
Note that all results are averaged over 10 runs and reported
with their standard deviations; the best method appears in bold,
and the runner-up is underlined.

1) Comparison of Tail Node Embeddings: We first study
classic base embedding models that are not specifically de-
signed for robustness on sparse networks, followed by robust
base models designed for sparse networks.

Classic base models. We report the performance of node
classification in Table II w.r.t. classic base embedding models
DeepWalk and GraphSAGE, respectively. On the one hand, our
meta-tail2vec achieves significant improvements over the base
embedding methods consistently, by 7.7%–10.9% w.r.t. Deep-
Walk and 9.3%–13.3% w.r.t. GraphSAGE in terms of MicroF.
The results demonstrate that tail node embedding is a critical
problem to address, and our proposed approach is indeed
useful in refining the tail node embeddings. On the other hand,
meta-tail2vec also outperforms other refinement baselines,
gaining performance lifts in the range of 5.3%–11.3% over
the best baseline in terms of MicroF. These baselines are sub-
optimal as they only assume one model for all tail nodes,
whereas meta-tail2vec can attribute its strong performance to
the locality adaptation to each node under a meta-learning
framework. In particular, the 2-hop variants of Additive and a
la carte are often worse than their 1-hop models, which may be
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TABLE II: Performance of node classification w.r.t. classic base embedding models.

Base Biased walk Additive Additive-2 a la carte a la carte-2 Nonce2vec Dropout meta-tail2vec
Improv. over

Base 2nd best

DeepWalk as the base embedding model

Wiki
MicroF 44.27 ± 0.25 44.69 ± 0.31 45.32 ± 0.52 42.11 ± 0.76 23.65 ± 0.44 23.34 ± 0.47 44.97 ± 0.29 36.88 ± 0.65 49.10 ± 0.23 +10.9% +8.3%

Accuracy 46.68 ± 0.31 47.05 ± 0.17 47.18 ± 0.29 44.73 ± 0.53 24.17 ± 0.49 24.48 ± 0.42 47.11 ± 0.22 38.13 ± 0.57 50.70 ± 0.45 +8.6% +7.5%

Flickr
MicroF 33.48 ± 0.26 33.61 ± 0.39 34.43 ± 0.41 32.59 ± 0.17 31.89 ± 0.47 32.25 ± 0.35 33.83 ± 0.28 33.91 ± 0.22 36.31 ± 0.19 +8.5% +5.5%

Accuracy 32.44 ± 0.13 32.57 ± 0.19 33.29 ± 0.17 31.31 ± 0.24 32.13 ± 0.26 32.62 ± 0.31 33.01 ± 0.15 32.86 ± 0.09 35.28 ± 0.25 +8.8% +6.0%

Email
MicroF 51.32 ± 0.29 50.95 ± 0.24 52.50 ± 0.17 51.17 ± 0.23 17.88 ± 0.48 18.21 ± 0.52 51.84 ± 0.33 32.72 ± 0.45 55.26 ± 0.18 +7.7% +5.3%

Accuracy 54.41 ± 0.34 54.13 ± 0.22 55.38 ± 0.43 53.82 ± 0.36 21.06 ± 0.45 21.13 ± 0.37 54.79 ± 0.19 33.85 ± 0.51 57.78 ± 0.29 +6.2% +4.3%

GraphSAGE as the base embedding model

Wiki
MicroF 39.68 ± 0.24 40.07 ± 0.15 37.84 ± 0.31 35.96 ± 0.43 23.88 ± 0.47 22.52 ± 0.39 40.75 ± 0.33 19.78 ± 0.59 44.29 ± 0.31 +11.6% +8.7%

Accuracy 41.22 ± 0.19 41.39 ± 0.06 39.31 ± 0.26 36.59 ± 0.25 25.71 ± 0.36 24.94 ± 0.62 41.65 ± 0.28 24.73 ± 0.42 44.90 ± 0.12 +8.9% +7.8%

Flickr
MicroF 29.38 ± 0.32 28.75 ± 0.31 27.86 ± 0.14 23.69 ± 0.44 30.02 ± 0.17 29.67 ± 0.20 29.85 ± 0.12 28.75 ± 0.11 32.11 ± 0.41 +9.3% +7.0%

Accuracy 28.46 ± 0.08 27.52 ± 0.19 27.69 ± 0.31 22.82 ± 0.45 29.83 ± 0.22 28.18 ± 0.46 29.26 ± 0.31 28.78 ± 0.14 31.96 ± 0.35 +12.3% +7.1%

Email
MicroF 41.25 ± 0.17 41.07 ± 0.33 35.83 ± 0.31 34.19 ± 0.13 27.81 ± 0.44 26.97 ± 0.39 41.97 ± 0.24 23.47 ± 0.25 46.73 ± 0.37 +13.3% +11.3%

Accuracy 42.61 ± 0.31 42.20 ± 0.31 37.25 ± 0.16 35.13 ± 0.35 29.41 ± 0.46 27.16 ± 0.34 43.23 ± 0.30 25.84 ± 0.18 47.70 ± 0.46 +11.9% +10.3%

TABLE III: Performance of link prediction w.r.t. classic base embedding models.

Base Biased walk Additive Additive-2 a la carte a la carte-2 Nonce2vec Dropout meta-tail2vec
Improv. over

Base 2nd best

DeepWalk as the base embedding model

Wiki
MRR 75.28 ± 0.37 75.13 ± 0.41 75.81 ± 0.62 74.89 ± 0.78 76.31 ± 0.25 76.14 ± 0.33 67.42 ± 0.87 77.06 ± 0.71 79.18 ± 0.52 +5.2% +2.8%
Hit@1 51.83 ± 0.42 52.04 ± 0.57 52.51 ± 0.67 51.48 ± 0.39 53.70 ± 0.61 53.59 ± 0.32 53.34 ± 0.49 54.19 ± 0.30 57.22 ± 0.46 +10.4% +5.6%

Flickr
MRR 50.05 ± 0.30 49.57 ± 0.19 49.80 ± 0.45 49.72 ± 0.41 50.36 ± 0.55 50.71 ± 0.65 50.83 ± 0.48 50.25 ± 0.59 52.18 ± 0.61 +4.3% +2.7%
Hit@1 25.32 ± 0.24 25.63 ± 0.55 26.10 ± 0.41 26.55 ± 0.62 26.07 ± 0.30 26.39 ± 0.58 26.67 ± 0.33 26.19 ± 0.44 28.11 ± 0.40 +11.0% +5.4%

Email
MRR 44.17 ± 0.35 44.58 ± 0.26 44.52 ± 0.68 44.96 ± 0.28 44.49 ± 0.50 45.11 ± 0.34 44.80 ± 0.15 45.33 ± 0.08 48.42 ± 0.55 +9.6% +6.8%
Hit@1 19.47 ± 0.38 19.96 ± 0.27 21.38 ± 0.15 21.66 ± 0.40 22.45 ± 0.58 22.63 ± 0.31 20.90 ± 0.44 23.02 ± 0.33 24.31 ± 0.46 +24.9% +5.6%

GraphSAGE as the base embedding model

Wiki
MRR 81.36 ± 0.14 82.01 ± 0.10 80.56 ± 0.45 80.39 ± 0.21 81.82 ± 0.53 80.94 ± 0.62 82.18 ± 0.64 82.52 ± 0.40 84.38 ± 0.61 +3.7% +2.3%
Hit@1 58.87 ± 0.52 58.39 ± 0.15 58.43 ± 0.61 58.92 ± 0.30 59.56 ± 0.29 59.34 ± 0.44 59.70 ± 0.37 59.93 ± 0.56 62.04 ± 0.68 +5.4% +3.5%

Flickr
MRR 55.83 ± 0.29 56.17 ± 0.36 55.04 ± 0.25 55.40 ± 0.58 56.28 ± 0.49 56.76 ± 0.40 56.31 ± 0.32 56.85 ± 0.71 58.15 ± 0.43 +4.2% +2.3%
Hit@1 34.59 ± 0.52 35.15 ± 0.47 33.79 ± 0.38 33.36 ± 0.40 35.22 ± 0.68 35.29 ± 0.64 34.97 ± 0.50 35.74 ± 0.31 36.92 ± 0.39 +6.7% +3.3%

Email
MRR 46.71 ± 0.45 46.24 ± 0.29 46.05 ± 0.25 46.68 ± 0.44 47.03 ± 0.53 46.92 ± 0.30 47.18 ± 0.19 46.37 ± 0.60 48.15 ± 0.44 +3.1% +2.1%
Hit@1 23.02 ± 0.23 22.73 ± 0.41 22.91 ± 0.44 22.65 ± 0.52 23.19 ± 0.39 23.14 ± 0.61 23.28 ± 0.43 23.07 ± 0.56 24.55 ± 0.70 +6.6% +5.4%

caused by noises from 2-hop nodes. However, our model also
aggregates 2-hop nodes and attains better performance than its
1-hop version (as we will see in Sect. V-C), potentially due to
the local adaptation which can effectively filter noises at each
locality.

We further report the performance of link prediction in
Table III w.r.t. classic base embedding models. Similar conclu-
sions can be drawn, where meta-tail2vec outperforms the base
models by 3.1%–9.6% and the best baseline by 2.1%–6.8% in
terms of MRR.

Robust base models for sparse networks. We also investigate
whether meta-tail2vec can also improve base models designed
for robustness on sparse networks.

We report the performance of node classification in Ta-
ble IV, w.r.t. each of the base models SDNE, ARGA, and
DDGCN. While these base models are intended to handle
sparse networks, they aim to increase the overall robustness
of the learning process, and do not explicitly improve the
embedding of the most vulnerable tail nodes. Thus, their
performances on the tail nodes are not necessarily better than
classic base models. Note that our approach meta-tail2vec
is embedding-agnostic, meaning that even for base models
already designed for sparse networks, we can still refine their
tail node embeddings, as demonstrated by the results that
meta-tail2vec outperforms the base embeddings by an average

of 14.9% in terms of MicroF on node classification. On the
other hand, we also compare meta-tail2vec to other baseline
refinement methods. (Due to space constraints, we only present
the results of Addictive, Nonce2vec, and Dropout, which are
generally the best baselines among all.) Again, due to our
locality-aware task formulation, the meta-learning strategy is
able to adapt to the locality of each tail node well, resulting
in an average performance lift of 8.5% in terms of MicroF
compared to the best baseline.

Furthermore, we report the performance of link prediction
in Table V. We have similar observations, where on average
meta-tail2vec outperforms the robust base models by 5.2% and
the best baseline by 2.0% in terms of MRR.

2) Comparison of Head Node Embeddings: While our
main goal is to improve tail node embeddings, we further
evaluate the performance on the head nodes to validate that
their embeddings still remain competitive. In theory, head
node embeddings are not changed in any way, since we only
predict new embedding vectors for tail nodes. However, the
performance of head nodes on a downstream application can
be potentially improved, as training the downstream model can
still benefit from the improved quality of tail nodes.

Thus, we further conducted an experiment on head node
embeddings. We sampled and evaluated a test set comprising
10% of the head nodes, and trained a model for each down-
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TABLE IV: Performance of node classification w.r.t. robust
base embedding models (MiF for MicroF; Acc for accuracy).

Base Additive Nonce2vec Dropout meta-tail2vec

SDNE as the base embedding model

Wiki
MiF 31.38 ± 0.34 34.46 ± 0.63 32.14 ± 0.75 34.69 ± 0.48 37.99 ± 0.83
Acc 34.10 ± 0.71 35.62 ± 0.28 34.59 ± 0.12 36.46 ± 0.43 38.80 ± 0.64

Flickr
MiF 34.74 ± 0.86 35.49 ± 0.47 34.73 ± 0.37 35.38 ± 0.35 38.50 ± 0.78
Acc 32.67 ± 0.32 34.72 ± 0.28 33.59 ± 0.73 34.64 ± 0.49 38.03 ± 0.66

Email
MiF 29.85 ± 0.48 31.07 ± 0.21 31.83 ± 0.46 34.50 ± 0.25 47.21 ± 0.72
Acc 32.90 ± 0.62 34.37 ± 0.27 33.79 ± 0.60 37.85 ± 0.47 51.70 ± 0.33

ARGA as the base embedding model

Wiki
MiF 32.22 ± 0.46 31.19 ± 0.23 32.47 ± 0.19 32.85 ± 0.23 33.51 ± 0.31
Acc 34.47 ± 0.52 33.84 ± 0.10 34.79 ± 0.21 35.22 ± 0.49 35.80 ± 0.23

Flickr
MiF 24.60 ± 0.15 23.69 ± 0.18 25.16 ± 0.20 24.71 ± 0.15 25.93 ± 0.25
Acc 22.81 ± 0.17 21.59 ± 0.11 24.26 ± 0.46 23.65 ± 0.39 25.37 ± 0.16

Email
MiF 24.38 ± 0.31 23.94 ± 0.47 24.97 ± 0.35 25.48 ± 0.53 26.11 ± 0.25
Acc 26.57 ± 0.43 25.69 ± 0.30 27.02 ± 0.37 27.54 ± 0.21 27.95 ± 0.16

DDGCN as the base embedding model

Wiki
MiF 29.49 ± 0.18 27.68 ± 0.58 31.20 ± 0.44 30.37 ± 0.35 33.02 ± 0.43
Acc 31.39 ± 0.25 30.82 ± 0.21 33.87 ± 0.75 32.69 ± 0.40 36.27 ± 0.41

Flickr
MiF 28.57 ± 0.47 26.92 ± 0.08 30.09 ± 0.35 29.17 ± 0.26 31.03 ± 0.52
Acc 25.90 ± 0.71 24.44 ± 0.12 26.76 ± 0.49 26.37 ± 0.25 28.38 ± 0.54

Email
MiF 38.95 ± 0.67 38.73 ± 0.55 39.62 ± 0.43 39.15 ± 0.40 41.83 ± 0.34
Acc 39.81 ± 0.56 38.20 ± 0.35 42.32 ± 0.63 41.69 ± 0.41 44.13 ± 0.73

TABLE V: Performance of link prediction w.r.t. robust base
embedding models (H@1 for hit@1).

Base Additive Nonce2vec Dropout meta-tail2vec

SDNE as the base embedding model

Wiki
MRR 72.25 ± 0.48 72.53 ± 0.30 74.44 ± 0.39 75.08 ± 0.65 76.97 ± 0.61
H@1 52.19 ± 0.27 51.94 ± 0.39 54.50 ± 0.61 55.21 ± 0.35 57.58 ± 0.74

Flickr
MRR 46.82 ± 0.20 47.09 ± 0.44 48.35 ± 0.51 48.17 ± 0.29 49.31 ± 0.46
H@1 26.23 ± 0.16 27.00 ± 0.33 28.82 ± 0.61 28.39 ± 0.10 29.26 ± 0.20

Email
MRR 34.02 ± 0.76 34.29 ± 0.51 36.87 ± 0.49 36.42 ± 0.55 39.55 ± 0.50
H@1 17.51 ± 0.24 18.65 ± 0.51 21.19 ± 0.40 20.88 ± 0.13 22.86 ± 0.63

ARGA as the base embedding model

Wiki
MRR 48.57 ± 0.40 46.49 ± 0.38 49.16 ± 0.45 50.27 ± 0.14 51.08 ± 0.20
H@1 41.40 ± 0.52 40.49 ± 0.07 41.67 ± 0.35 42.22 ± 0.10 43.73 ± 0.65

Flickr
MRR 35.52 ± 0.32 35.41 ± 0.72 35.69 ± 0.63 36.31 ± 0.28 36.87 ± 0.45
H@1 29.73 ± 0.34 28.86 ± 0.40 29.89 ± 0.62 30.51 ± 0.77 31.37 ± 0.29

Email
MRR 26.83 ± 0.29 25.89 ± 0.47 26.91 ± 0.18 26.22 ± 0.40 27.26 ± 0.55
H@1 16.51 ± 0.29 16.30 ± 0.42 17.22 ± 0.40 16.89 ± 0.31 17.87 ± 0.35

DDGCN as the base embedding model

Wiki
MRR 73.25 ± 0.49 74.10 ± 0.34 74.28 ± 0.15 74.92 ± 0.53 75.31 ± 0.67
H@1 51.28 ± 0.39 50.77 ± 0.21 51.86 ± 0.45 52.56 ± 0.32 53.30 ± 0.61

Flickr
MRR 52.17 ± 0.40 50.74 ± 0.51 52.23 ± 0.42 51.79 ± 0.60 52.49 ± 0.34
H@1 37.15 ± 0.38 35.82 ± 0.85 37.53 ± 0.42 37.16 ± 0.60 38.68 ± 0.63

Email
MRR 41.58 ± 0.45 40.83 ± 0.37 42.96 ± 0.39 42.81 ± 0.12 43.47 ± 0.18
H@1 27.35 ± 0.39 28.31 ± 0.63 28.58 ± 0.25 28.87 ± 0.30 29.22 ± 0.36
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Fig. 4: Performance of node classification on head nodes w.r.t.
DeepWalk as the base embedding model.

stream task on the other nodes, inclusive of the tail nodes
and the remaining 90% head nodes. We tabulate the results
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Fig. 5: Performance of link prediction on head nodes w.r.t.
DeepWalk as the base embedding model.
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Fig. 6: Ablation study of the meta-learning strategy on node
classification w.r.t. DeepWalk as the base model.
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Fig. 7: Impact of number of hops on node classification.

in Figs. 4 and 5 for node classification and link prediction,
respectively. As hypothesized, both meta-tail2vec and other
baseline refinement approaches can slightly outperform the
base embedding model, due to the improved quality of tail
node embeddings in the downstream training data. However, it
is not surprising that the improvements are modest compared
to tail nodes, in the range of 0.3%–0.9% only. The reason
is that the head node embeddings remain unchanged and
their performance is only indirectly influenced by refined
tail node embeddings. Nevertheless, we validated the goal of
significantly improving tail node embeddings whilst head node
embeddings remain robust.

C. Model Analysis and Discussion

1) Ablation Study: We analyze the contribution of our
approach by an ablation study. Using DeepWalk as the base
embedding model, we compare the following four variants of
meta-tail2vec: (1) full, the full meta-tail2vec model; (2) global,
only train one global embedding regression model on the head
nodes, and predict the embedding vectors of all tail nodes with
the same global model (equivalent to the Dropout baseline);
(3) fine-tune, fine-tune the pre-trained global model on the
support set of a tail node before predicting its embedding
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vector; (4) rand-supp, the same approach as the full model
except the locality awareness, which samples random nodes
from the graph as the support sets.

Their performances are reported in Fig. 6. Among the four
variants, we observe that the fine-tune model is only able to
achieve marginally better performance than the global model,
as fine-tuning on the small support set of a tail node can
easily cause overfitting. In particular, on the Flickr dataset,
the fine-tune model is in fact slightly worse than the global
model due to overfitting. Next, the rand-supp model performs
the worst, implying that the locality-aware task generation
is critical for graph data. Finally, the full model performs
the best, demonstrating the effectiveness of our locality-aware
meta-learning approach.

2) Impact of Neighborhood Hops: We also analyze the
impact of neighborhood hops on computing the input feature in
Eq. (5), and present the results in Fig. 7. Generally, aggregating
the 2-hop neighborhood achieves optimal performance on all
datasets. Besides, aggregating the 3-hop neighborhood results
in decreased performance due to more noise from the less
relevant nodes.

VI. EXPERIMENTS ON HETEROGENEOUS GRAPHS

In this section, we conduct node classification and link
prediction on two benchmark heterogeneous graphs to evaluate
the performance of our proposed meta-tail2vec+.

A. Experimental Settings

1) Datasets: We employ two heterogeneous graphs, i.e.,
DBLP [64] and MovieLens2. DBLP is a bibliography network
collected from DBLP3, in which there are four node types,
i.e., Paper (P), Conference (C), Author (A) and Term (T),
thus forming three types of links, P-C, P-A and P-T. Based
on the original 4,057 labeled author nodes in four classes,
we further label the paper nodes into four classes for node
classification. In particular, we only label the paper nodes with
the neighboring author label which covers no less than half of
all labeled neighboring authors. MovieLens is a benchmark
dataset collected by GroupLens. It contains four node types,
i.e., User (U), Movie (M), Actor (A), and Director (D), form-
ing three types of links, U-M, M-A, and M-D. Movies released
from 1999 to 2000 are labeled into 18 classes based on their
genres. The statistics of the two datasets are summarized in
Table VI.

2) Base Embedding Models: Our meta-tail2vec+ is agnos-
tic of the heterogeneous embedding model, thus we choose
one typical model from two categories of heterogeneous em-
bedding models: heterogeneous network embedding approach
metapath2vec [23] and heterogeneous graph neural network
HAN [26].
• metapath2vec [23]: a typical heterogeneous network embed-

ding model, which utilizes predefined meta-paths [65] to
guide path sampling, and further learns node representations
by feeding the paths into a skip-gram model.

2https://grouplens.org/datasets/movielens/
3https://dblp.org/

TABLE VI: Summary of heterogeneous datasets. Underlined
node type indicates the target type for the classification task.

node type nodes edges classes multi-label tail nodes

DBLP

Paper (P) 14,376

170,794 4 No 385Conference (C) 20
Author (A) 14,475
Term (T) 8,920

MovieLens

User (U) 6,040

1,019,817 18 Yes 506
Movie (M) 3,881
Actor (A) 8,030

Director (D) 2,186

• HAN [26]: a heterogeneous GNN which conducts neigh-
borhood aggregation with both node- and semantic-level
attention to aggregate neighbors w.r.t. predefined meta-
paths. We utilize the DeepWalk embeddings [1] as the initial
node features.

Setup and parameters. We refer to the settings and param-
eters in their original work and further tune them to achieve
optimal performance. In particular, for metapath2vec, we em-
ploy meta-paths APA, APCPA, and APTPA for DBLP, while
UMA and UMD for MovieLens. For the hyper-parameters, we
set the output embedding dimension as 128, window size as
5, walk length as 100, number of walks per node as 40, and
number of negative samples as 5. For HAN, we modify it in
a self-supervised manner to learn the initial base embeddings,
by maximizing the similarity between the 2-hop neighbors of
the same type, since nodes of the same type are not directly
connected in these two datasets. For the hyper-parameters,
we set the dimension of the semantic-level attention vectors
as 128, the dropout rate as 0.6, the dimension of the output
embeddings as 128, and employ 8 heads for self-attention.

3) Baselines and Model Settings: In addition to the base
embedding models as well as meta-tail2vec, we further employ
a series of baselines, including Additive, Additive-2, a la carte,
a la carte-2 and Dropout, with the same settings as illustrated
in Sect. V-A3. For meta-tail2vec+, we also employ the same
model and parameter settings with meta-tail2vec as depicted
in Sect. V-A3. However, the sampling of the locality-aware
support set is extended to 2-hop neighbors since nodes of the
same type are not directly connected in these two datasets.

4) Downstream Applications: We experiment with two
downstream applications, node classification and link pre-
diction. In particular, as indicated in Table VI, we target
the Paper nodes on the DBLP dataset and Movie nodes on
the MovieLens dataset for classification and link prediction.
Unlike the homogeneous setting, we use different k values to
distinguish between head and tail nodes due to the difference
in data sparsity across these datasets. More specifically, for
Paper nodes on DBLP, nodes with five or fewer links are
designated as tail nodes, that is, {v ∈ V : |Nv| ≤ 5} (i.e.,
k = 5). However, for Movie nodes on MovieLens, nodes
with ten or fewer links are regarded as tail nodes, that is,
{v ∈ V : |Nv| ≤ 10} (i.e., k = 10), since MovieLens
has a much higher average node degree than DBLP. Note
that, for both datasets, we ensure that each head node has
at least five neighbors of the same type within two hops. This
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TABLE VII: Performance of node classification w.r.t. classic base heterogeneous embedding models.

Base Additive Additive-2 a la carte a la carte-2 Dropout meta-tail2vec meta-tail2vec+
Improv. over

Base 2nd best

metapath2vec as the base heterogeneous embedding model

DBLP
MicroF 75.09 ± 0.25 32.01 ± 0.43 74.30 ± 0.49 75.64 ± 0.29 73.50 ± 0.30 72.89 ± 0.21 75.14 ± 0.27 78.02 ± 0.21 +3.9% +3.1%

Accuracy 80.39 ± 0.15 29.07 ± 0.38 79.35 ± 0.33 80.95 ± 0.27 78.80 ± 0.27 78.54 ± 0.34 80.85 ± 0.33 82.63 ± 0.23 +2.8% +2.1%

MovieLens
MicroF 43.35 ± 0.35 11.44 ± 0.57 48.40 ± 0.63 21.36 ± 0.31 42.83 ± 0.29 41.72 ± 0.39 44.77 ± 0.42 50.05 ± 0.40 +15.5% +3.4%

Accuracy 35.63 ± 0.31 8.06 ± 0.62 39.43 ± 0.48 15.59 ± 0.41 34.09 ± 0.25 32.96 ± 0.26 37.49 ± 0.45 42.61 ± 0.37 +19.7% +8.1%

HAN as the base heterogeneous embedding model

DBLP
MicroF 63.70 ± 0.28 64.07 ± 0.31 64.25 ± 0.38 64.18 ± 0.25 62.53 ± 0.43 63.97 ± 0.37 63.81 ± 0.23 65.09 ± 0.19 +2.2% +1.3%

Accuracy 78.95 ± 0.15 79.12 ± 0.27 78.83 ± 0.30 79.02 ± 0.24 78.44 ± 0.17 78.83 ± 0.31 78.70 ± 0.29 80.19 ± 0.22 +1.6% +1.4%

MovieLens
MicroF 51.96 ± 0.23 52.52 ± 0.36 52.77 ± 0.31 50.78 ± 0.29 52.23 ± 0.42 51.35 ± 0.39 52.15 ± 0.30 56.38 ± 0.27 +8.5% +6.8%

Accuracy 44.80 ± 0.35 45.10 ± 0.58 44.92 ± 0.47 44.40 ± 0.44 44.75 ± 0.47 44.99 ± 0.41 44.89 ± 0.40 49.72 ± 0.31 +11.0% +10.2%

TABLE VIII: Performance of link prediction w.r.t. classic base heterogeneous embedding models.

Base Additive Additive-2 a la carte a la carte-2 Dropout meta-tail2vec meta-tail2vec+
Improv. over

Base 2nd best

metapath2vec as the base heterogeneous embedding model

DBLP
MRR 72.40 ± 0.31 72.12 ± 0.38 73.55 ± 0.40 73.17 ± 0.18 73.67 ± 0.23 73.93 ± 0.37 72.48 ± 0.34 75.84 ± 0.24 +4.8% +2.6%
Hit@1 57.54 ± 0.25 56.31 ± 0.29 58.02 ± 0.41 57.93 ± 0.22 58.11 ± 0.31 58.94 ± 0.28 57.93 ± 0.36 61.40 ± 0.33 +6.7% +4.2%

MovieLens
MRR 89.36 ± 0.43 88.79 ± 0.41 89.58 ± 0.46 89.88 ± 0.38 90.27 ± 0.32 90.32 ± 0.27 89.83 ± 0.25 91.11 ± 0.29 +2.0% +0.9%
Hit@1 81.31 ± 0.33 82.76 ± 0.29 83.00 ± 0.37 82.93 ± 0.28 83.28 ± 0.21 83.60 ± 0.30 82.05 ± 0.28 85.15 ± 0.36 +4.7% +1.9%

HAN as the base heterogeneous embedding model

DBLP
MRR 71.22 ± 0.42 70.39 ± 0.46 71.12 ± 0.29 71.36 ± 0.31 70.20 ± 0.41 71.82 ± 0.32 71.09 ± 0.32 73.90 ± 0.33 +3.8% +2.9%
Hit@1 54.48 ± 0.35 53.83 ± 0.20 54.28 ± 0.24 54.85 ± 0.41 53.47 ± 0.36 55.14 ± 0.28 54.29 ± 0.27 57.63 ± 0.39 +5.8% +4.5%

MovieLens
MRR 76.78 ± 0.26 76.00 ± 0.28 76.52 ± 0.35 76.34 ± 0.27 76.66 ± 0.26 77.46 ± 0.31 76.56 ± 0.34 78.25 ± 0.22 +1.9% +1.0%
Hit@1 58.88 ± 0.35 57.66 ± 0.21 58.49 ± 0.17 58.53 ± 0.36 58.84 ± 0.24 59.75 ± 0.29 58.42 ± 0.31 61.68 ± 0.38 +4.8% +3.2%

stipulation ensures that each head node has a sufficient number
of candidate nodes for sampling their support nodes during the
meta-learning process.

Node classification. We carry out multi-class and multi-label
node classification on DBLP and MovieLens, respectively.
Following the same settings in Sect. V-A4, we evaluate the
performance on the tail nodes after training a logistic regres-
sion classifier on the head nodes. We also employ MicroF and
Accuracy to evaluate classification performance.

Link prediction. We adopt the same setup for link prediction
on homogeneous graphs as illustrated in Sect. V-A4. In
particular, for Paper nodes on DBLP and Movie nodes on
MovieLens which have between 2 and k + 1 links, we adopt
the leave-one-out strategy by removing a random link from
each of them and our goal is to rank the removed link higher
than the other five randomly sampled negative links. Similarly,
we also formulate link prediction into a ranking problem, and
employ the same evaluation metrics, i.e., MRR and Hit@1.
In the training set, for DBLP dataset, we employ the head
Paper nodes which have more than five 1-hop neighbors and
five 2-hop neighbors as training nodes; for MovieLens dataset,
we employ the head Movie nodes which have more than ten
1-hop neighbors and five 2-hop neighbors as training nodes.
In the testing set, for DBLP dataset, we employ the tail Paper
nodes which have no more than five 1-hop neighbors as testing
nodes; for MovieLens dataset, we employ the tail Movie nodes
which have no more than ten 1-hop neighbors as testing nodes.

B. Performance Comparison
We focus on the performance comparison on the tail nodes.

We further investigate the performance on the head nodes to
show that their embeddings are not adversely impacted.

1) Comparison of Tail Node Embeddings: Node classi-
fication. We report the performance of node classification
on HINs in Table VII w.r.t. base embedding models meta-
path2vec and HAN, respectively. We have the following
observations. First, the proposed meta-tail2vec+ outperforms
its base embedding models including both metapath2vec and
HAN. Though typical and powerful for representation learning
on heterogeneous graphs, they focus on the performance of all
nodes thus usually marginalizing the learning of challenging
tail nodes. By virtue of the heterogeneity-aware neighborhood
aggregation and the dual-adaptation, meta-tail2vec+ is capable
of providing more semantically consistent refinement of the
tail node embeddings on HINs. Second, meta-tail2vec+ can
achieve better performance than other refinement baselines. As
analyzed in Sect. V-B, these baselines only assume one model
for all tail nodes, while meta-tail2vec+ tailors to each node
for finer node representations. Besides, these baselines cannot
effectively cope with the heterogeneity due to their neglect on
the node types, while meta-tail2vec+ can address this issue by
means of the heterogeneity-aware neighborhood aggregation
and dual-adaptation.

Besides, meta-tail2vec, which does not consider the graph
heterogeneity either, can be treated as an ablated variant
of meta-tail2vec+. meta-tail2vec+ is able to achieve su-
perior performance, demonstrating the effectiveness of the
proposed heterogeneity-aware neighborhood aggregation and
dual-adaptation-based few-shot regression in dealing with the
representation learning for tail nodes on HINs.
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Fig. 8: Performance on head nodes w.r.t. metapath2vec as the
base embedding model.

Link prediction. We further report the performance com-
parison for link prediction w.r.t. the two base embedding
models in Table VIII. Similar observations can also be made
that our proposed meta-tail2vec+ can significantly outperform
the corresponding base embedding models and the refinement
baselines, and this further demonstrates the effectiveness of
meta-tail2vec+ on HINs.

2) Comparison of Head Node Embeddings: Similar to the
comparison of head node embeddings illustrated in Sect. V-B2,
here we follow the same setting to evaluate their performance,
and show the results for node classification and link prediction
in Figs. 8(a) and (b), respectively. Note that, here head nodes
only contain nodes from one type on each dataset, i.e., Paper
nodes on DBLP or Movie nodes on MovieLens. As illustrated
in Sect. V-B2, in both downstream applications, meta-tail2vec
is able to achieve a slight performance lift on head nodes
compared to the base embedding model, as the improved tail
nodes might further boost the performance of head nodes via
neighborhood aggregation. Similar observations can also be
made in Fig. 8. In particular, meta-tail2vec+ can outperform
the base embedding model and other baselines in terms of
both node classification and link prediction on head nodes.
This further demonstrates the intuition that the performance
of head nodes is indirectly influenced by the refined tail
node embeddings. Again, our goal is to improve tail node
embeddings while head node embeddings remain robust.

VII. CONCLUSIONS

In this paper, we investigated the problem of tail node
embedding on both homogeneous and heterogeneous graphs.
We first formulated the problem as an instance of few-shot
regression, and proposed a novel approach meta-tail2vec for
refining tail node embeddings. In particular, to personalize
each tail node given its local contexts, we designed a locality-
aware task generation strategy to capture the prior knowledge
across nodes at different localities. We further extend meta-
tail2vec into meta-tail2vec+ to facilitate the locality-aware
tail node embeddings on HINs. Finally, extensive experiments
demonstrated their promising performance on both node clas-
sification and link prediction.
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