
Towards Locality-Aware Meta-Learning
of Tail Node Embeddings on Networks

Zemin Liu
1∗
, Wentao Zhang

2∗†
, Yuan Fang

1
, Xinming Zhang

2
, Steven C.H. Hoi

1,3‡
1
Singapore Management University,

2
University of Science and Technology of China,

3
Salesforce Research Asia

{zmliu, yfang}@smu.edu.sg, zwt@mail.ustc.edu.cn, xinming@ustc.edu.cn, shoi@salesforce.com

ABSTRACT
Network embedding is an active research area due to the preva-

lence of network-structured data. While the state of the art often

learns high-quality embedding vectors for high-degree nodes with

abundant structural connectivity, the quality of the embedding

vectors for low-degree or tail nodes is often suboptimal due to

their limited structural connectivity. While many real-world net-

works are long-tailed, to date little effort has been devoted to tail

node embedding. In this paper, we formulate the goal of learning

tail node embeddings as a few-shot regression problem, given the

few links on each tail node. In particular, since each node resides

in its own local context, we personalize the regression model for

each tail node. To reduce overfitting in the personalization, we

propose a locality-aware meta-learning framework, called meta-
tail2vec, which learns to learn the regression model for the tail

nodes at different localities. Finally, we conduct extensive exper-

iments and demonstrate the promising results of meta-tail2vec.

(Supplemental materials including code and data are available at

https://github.com/smufang/meta-tail2vec.)

CCS CONCEPTS
• Information systems→Datamining; •Computingmethod-
ologies→Machine learning;Learning latent representations.

KEYWORDS
meta-learning, network embedding, tail nodes

ACM Reference Format:
Zemin Liu, Wentao Zhang, Yuan Fang, Xinming Zhang, Steven C.H. Hoi.

2020. Towards Locality-Aware Meta-Learning of Tail Node Embeddings

on Networks. In The 29th ACM International Conference on Information
and Knowledge Management (CIKM’20), October 19–23, 2020, Virtual Event,
Ireland. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3340531.3411910

∗
Co-first authors with equal contribution.

†
Work done as a visiting research student at Singapore Management University.

‡
Currently on leave from Singapore Management University.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00

https://doi.org/10.1145/3340531.3411910

1 500 1000 1500 2000
Node rank by degree

0

50

100

150

200

250

No
de

 d
eg

re
e

(a) Degree distribution

1~5 6~10 11~15 16~20 21~30 31+
Node degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
icr

oF

(b) Classification performance

Figure 1: Distribution of node degree and its relationship to
the quality of embedding vector on the Wiki network.

1 INTRODUCTION
Network structures are prevalent in various real-world scenarios,

such as social networks, citation networks and biological networks.

On these networks, many problems can be formulated as node

classification and link prediction, which rely heavily on effective

network representations. While traditional approaches mainly fo-

cus on manual feature engineering, recent network embedding [26]

and graph neural networks [17] have become the de facto state-of-
the-art approaches for learning representations of network data.

Specifically, these methods aim to encode network structures by

mapping nodes into a low-dimensional vector space, in which the

structural information is preserved.

Despite their success, a critical question remains open: the per-

formance of most existing embedding methods depends on the

availability of abundant structural connectivity. Although this is

not a concern for medium-to-high degree nodes with many links

to other nodes, low-degree nodes with very few links often suffer

from the problem of limited structural information. As a result,

the embedding vector for a low-degree node cannot be accurately

learned from its structural information. Generally, the node de-

grees vary considerably across the network and are not uniformly

distributed. In many networks, the degrees approximately follow

the power-law distribution [26]. For instance, Fig. 1(a) illustrates

the degree distribution of the Wiki network [39], a network of in-

terlinked Wikipedia pages belonging to 19 categories. The node

degrees are characterized by a long-tailed distribution, where a

significant fraction of the nodes belong to the tail with very low

degrees. The embeddings of these tail nodes are unsatisfactory, as
demonstrated by the performance of node classification in Fig. 1(b).

Particularly, when the node degree decreases, the performance also

decreases due to less structural information.

Unfortunately, most current network embedding or graph neu-

ral network approaches overlook the tail nodes, by regarding all

https://github.com/smufang/meta-tail2vec
https://doi.org/10.1145/3340531.3411910


nodes uniformly and adopting the same learning approach despite

their diverse degrees. For example, DeepWalk [26] samples node

sequences from the network and feeds them to the same skip-gram

model without paying special attention to low-degree nodes, while

graph neural networks [12, 17] derive the embedding of a target

node by aggregating its neighboring nodes in the same manner

without adapting to the degree of the target node. Not surprisingly,

the tail nodes with very few links are usually under-modeled than

those with many links. This inspires us to investigate the following

research problem: How do we learn effective embedding vectors for
tail nodes from limited structural information?

The problem is challenging for two reasons. (1) The tail nodes

have very few links, which provide scarce structural information.
The issue is especially severe when only network structures are

available, without access to additional side information such as item

contents in recommendation [36] and morphological information

in word embedding [1]. (2) Each node is associated with a unique

locality, and thus the embedding model should ideally become

specialized from node to node. However, in practice this presents a

dilemma: adapting to each node often causes overfitting, which is

particularly serious for tail nodes with very few observed links.

To address the first challenge of scarce structural information,

we exploit the embeddings of nodes with a sufficient number of

links (i.e., non-tail nodes and we call them head nodes hereafter).

Considering any network embedding model, the learned embed-

ding vectors of head nodes tend to be more accurate than those of

tail nodes, due to more abundant structural information associated

with head nodes. Thus, we treat the embeddings of head nodes as

our oracle embeddings, which can be leveraged to train a regres-

sion model capable of reconstructing the oracle embeddings in a

self-supervised manner. Using the regression model, our goal is

to predict new embeddings for tail nodes such that their quality

can approach that of the oracle embeddings. To further ensure that

the regression model fits both head and tail nodes, we propose

to perform link dropouts on head nodes, to simulate the limited

structural information of tail nodes.

To address the second challenge of adapting to the locality of

each node, we resort to the meta-learning paradigm [9, 28], for its

ability of adapting to new learning tasks (also called episodes) by

learning a transferable prior common to different tasks. Known

as meta-learning, it learns how to learn a model in the form of a

prior, contrary to learning one model for all tasks (which cannot

differentiate tasks) or individual models for each task (which may

overfit to each task). In particular, we adopt the meta-learning

frameworkMAML [9], which has the advantage of quick adaptation

in a model-agnostic manner and has achieved considerable success

in various problem domains [15, 19].

To realize the above insights in our scenario, we construct locality-
aware tasks: one task for each node to represent its locality, and

learn a regression prior that can be easily adapted to each task or

locality. In each task, given a query node, we aim to predict its

embedding vector after training on a set of support nodes. While

the support set is often randomly sampled, for locality-aware learn-

ing, we propose to use the neighbors of the query node as the

support nodes, assuming that the localities of neighboring nodes

are similar. More specifically, during meta-training, each task in-

volves a head node as the query, with the objective of learning a

regression prior such that the prior can be adapted by the support

nodes to accurately reconstruct the oracle embeddings of the query.

During meta-testing, each task involves a tail node as the query,

and the learned prior will be adapted by the support nodes before

predicting a better embedding vector for the query. To make the

meta-training and meta-testing tasks more similar, we again adopt

link dropouts to sample only a few neighbors as the support set

during meta-training, to simulate meta-testing tasks on tail nodes.

Essentially, each task is a few-shot regression problem.

In summary, we propose a novel approach meta-tail2vec, which
learns to learn tail node embeddings in a few-shot regression setting.

The model operates in an embedding-agnostic manner, which is

flexible to work with any network embedding model. Specifically,

our contribution is threefold. (1) We formulate the novel problem

of learning tail node embeddings on networks, and cast it as an

instance of regression via oracle reconstruction. (2) We propose a

base regression model hinged on the concept of link dropouts, and

formulate the locality-aware tasks on networks in a meta-learning

framework, which allows for easy local adaption of the base model.

(3) We conduct extensive experiments on three public datasets, in

which meta-tail2vec attains significant performance gains.

2 RELATEDWORK
Network embedding [2] has been popular for graph representa-

tion learning, requiring only network structures as input. Various

approaches have been proposed to generate structure-preserving

node embeddings, such as random walks [11, 26], matrix factoriza-

tion [4, 23], node proximity [31], and motifs or subgraphs [7, 38].

Graph neural networks (GNN) [12, 17] emerge as another powerful

tool for representation learning, which are designed to integrate

both node features and network structures.

However, little attention has been paid to the learning of tail

node embeddings.While several recent studies explore various tech-

niques to deal with sparse networks, such as using dual dropouts to

avoid overfitting [3], adopting the adversarial principle to learn the

underlying distribution [25, 35] and leveraging the global network

structure [34], they aim to increase the overall robustness and do

not specifically target the most vulnerable tail nodes. Nevertheless,

some studies also deal with sparse observations in other domains,

such as cold-start recommendation [20, 33, 36] and rare word em-

bedding [1, 15, 27]. However, these methods rely on additional side

information, such as item contents or word morphology.

To address the general problem of learning from less data, partic-

ularly in few-shot scenarios, meta-learning [9, 29, 32] has demon-

strated considerable success in several domains including vision

[32], language [13, 15] and data mining [19, 24]. These methods

typically learn some prior knowledge from an abundant number of

related tasks, and adapt the prior to new tasks with limited data. As

many forms of data often entail inherent graph structures, recent

studies often exploit some auxiliary graphs, such as affinity graphs

[10, 22], class relational graphs [21] and one-hop ego-networks

[37, 42]. Few-shot learning on graphs proper have also been ex-

plored, including node classification on a single large graph [43],

and node or graph-level classification on multiple graphs [5, 40].

To the best of our knowledge, our approach is the first use of meta-

learning for tail node embedding.



3 PROBLEM CASTING AS REGRESSION
We begin with the problem statement, and cast it as an instance of

regression based on the idea of oracle reconstruction.

3.1 Problem statement
Consider a graph G = (V, E) with the set of nodes V and the

set of edges E. Let N𝑣 denote the set of neighbors of node 𝑣 ∈ V ,

and the size of the neighbor set |N𝑣 | is known as the degree of

𝑣 . In particular, 𝑣 is a low-degree or tail node if its degree is no

larger than some constant 𝑘 . That is, the set of tail nodes is V
tail

=

{𝑣 ∈ V : |N𝑣 | ≤ 𝑘}. We call the remaining nodes head nodes:

V
head

= {𝑣 ∈ V : |N𝑣 | > 𝑘}.
Given any base network embedding model 𝜙 , we denote h𝑣 =

𝜙 (G, 𝑣) ∈ R𝑑 as the 𝑑-dimensional embedding vector of node 𝑣 ,

learned by 𝜙 on graph G, ∀𝑣 ∈ V . Since the tail nodes have scarce

structural features due to their small degrees, presumably their em-

beddings {h𝑣 : 𝑣 ∈ V
tail

} are inferior in quality to the embeddings

of the head nodes O = {h𝑣 : 𝑣 ∈ V
head

}.
Our goal is to learn new embedding vectors for the tail nodes

{ĥ𝑣 : 𝑣 ∈ V
tail

}, such that their quality is improved to eventually

approach the quality of the head nodes’ embeddings O. Note that

our setup is embedding-agnostic, i.e., any embedding model 𝜙 can

be used as the base embedding model.

3.2 Regression via oracle reconstruction
A major challenge of learning tail node embeddings lies in the lim-

ited availability of structural information. That is, each tail node

only has a few observed neighbors. Without assuming additional

side information (e.g., item contents in recommendation systems),

we take advantage of the high-quality embeddings of head nodes,

and investigate how high-quality embeddings can be similarly con-

structed for the tail nodes.

Specifically, we propose to cast the problem as an instance of

regression. We train a regression model 𝐹 on the head nodes, treat-

ing their embeddings O, which are learned by the base embedding

model 𝜙 , as the oracle embeddings w.r.t. 𝜙 . Given any head node

𝑣 , 𝐹 (𝑣 ;Θ) outputs a new predicted embedding ĥ𝑣 to approximate

its oracle embedding h𝑣 ∈ O. In other words, 𝐹 is expected to re-
construct the oracle embeddings O of the head nodes, regardless of

how the base embedding model works. Formally, we optimize the

parameters Θ of the regression model 𝐹 by

argmin

Θ

∑
𝑣∈Vhead

∥𝐹 (𝑣 ;Θ) − h𝑣 ∥2 . (1)

Note that here we use the Euclidean norm ∥ · ∥, although other

distance functions can be adopted too.

After training, 𝐹 can be applied to the tail nodes as test instances,

so as to predict their unknown oracle embeddings, supposedly at-

taining similar quality as O. The improved embedding vectors of

tail nodes can be subsequently used as representations for down-

stream tasks such as node classification and link prediction, whose

performance would benefit from the better embeddings.

4 META-LEARNED FEW-SHOT REGRESSION
In this section, we first introduce a regression model to predict new

embedding vectors for tail nodes, then personalize the regression

…

…

1-hop

2-hop

Neighborhood
Aggregation

Regression loss

𝐱௩
v

a b

d
e c

v

a e

MLP 
𝐹(𝑣, Θ)

…

…

…

…

𝐡௩h

𝐡௩ − 𝐡௩
ଶh

(a) 2-hop neighbors of node 𝑣 (b) Embedding regression model

h𝐡௩:

𝐡௩:

predicted 
embedding
oracle
embedding

Figure 2: Training a regressionmodel to predict node embed-
dings reconstructed from neighboring nodes.

for each node by formulating node-wise locality-aware tasks, and

finally present the overall meta-learning approach meta-tail2vec.

4.1 Embedding regression model
As illustrated in Fig. 2, we materialize the regression model 𝐹 (𝑣 ;Θ)
in order to reconstruct the oracle embedding h𝑣 of a node 𝑣 . Specif-
ically, we leverage the widely used Multi-Layer Perceptron (MLP):

ĥ𝑣 = 𝐹 (𝑣 ;Θ) =𝑊2 · 𝜎 (𝑊1x𝑣 + b1) + b2, (2)

where x𝑣 ∈ R𝑑1 is the input feature vector of node 𝑣 . The parameters

of the MLP include 𝑊1 ∈ R𝑑2×𝑑1 , 𝑊2 ∈ R𝑑×𝑑2 , b1 ∈ R𝑑2 and

b2 ∈ R𝑑 , i.e., Θ = {𝑊1,𝑊2, b1, b2}. 𝜎 (·) is an activation function,

and we adopt ReLU in this paper. Note that the size of the output

layer is 𝑑 , the same as the embedding dimension of the nodes.

For a node 𝑣 , the input to the MLP is a feature vector x𝑣 . In the

following, we discuss the formulation of the input feature vector.

4.1.1 Neighborhood aggregation. On a network, a node 𝑣 is charac-

terized by its structural features or its neighbor set, N𝑣 . Naturally,

we can aggregate the embedding vectors of the neighbors to con-

struct its input feature x𝑣 , an idea similar and central to many graph

neural networks [12, 17]. Specifically,

x𝑣 = Aggr({h𝑖 : 𝑖 ∈ N𝑣}), (3)

where Aggr(·) is an aggregator such as mean pooling. More gener-

ally, we can also aggregate nodes within an𝑚-hop radius of 𝑣 , as

shown in Fig. 2(a). Defining the𝑚-hop neighbor set of 𝑣 as

N (𝑚)
𝑣 =

⋃
𝑖∈N (𝑚−1)

𝑣

N𝑖 , (4)

and N (1)
𝑣 ≡ N𝑣 , the input feature x𝑣 can be constructed as

x𝑣 = Aggr({h𝑖 : 𝑖 ∈ N (1)
𝑣 ∪ N (2)

𝑣 ∪ . . . ∪ N (𝑚)
𝑣 }). (5)

Note that, although advanced strategies such as tree-LSTMs [30]

and graph convolutions [17] may be employed to aggregate mul-

tiple hops, we adopt the simple mean pooling to demonstrate the

effectiveness of our approach.



Support 𝑆ௗ

Query 𝑞ௗ

v 𝐡௩
c 𝐡
e 𝐡

d 𝐡ௗ

Task 𝑇ௗ

Support 𝑆

Query 𝑞

d 𝐡ௗ

y 𝐡௬

g ?

Task 𝑇

v
a b

d
e

f

u
x

g

y

z

link 
dropouts

…

Meta-train

𝐡
𝐡𝐡௩

𝐡

𝐡௫ 𝐡௬

𝐡௭

c

…

Meta-test

Locality adaptation

Optimization

(a) Toy network (b) Locality-aware tasks (c) Locality-aware meta-learning

Θ

all
links

prior local 
modelSupport loss

∑ 𝐹(𝑖, Θ) − 𝐡
ଶ

,𝐡 ∈ௌೡ Θ௩
ᇱ

Task (query) loss

𝐹 𝑣, Θ௩
ᇱ − 𝐡௩

ଶ

Θ

learned 
prior Locality adaptation

Prediction

local 
modelSupport loss

∑ 𝐹(𝑖, Θ) − 𝐡
ଶ

,𝐡 ∈ௌೠ Θ௨
ᇱ

Gradient step 
w.r.t. support loss

Gradient step 
w.r.t. task loss

𝐹 ⋅, Θ
Embedding 

regression model

Support 𝑆௩

Query 𝑞௩

a 𝐡
b 𝐡
e 𝐡

v 𝐡௩

Task 𝑇௩

Support 𝑆௨

Query 𝑞௨

x 𝐡௫
y 𝐡௬
z 𝐡௭

u ?

Task 𝑇௨

h௨ = 𝐹(𝑢, Θ௨
ᇱ )𝐡

Figure 3: Overall framework of our locality-aware tail node embedding model meta-tail2vec. (Best viewed in color.)

4.1.2 Link dropouts. One major flaw of such an input vector x𝑣
is that the head nodes in training and the tail nodes in testing

posses very different neighbor sets in terms of their abundance, i.e.,
|𝑁𝑣 | ≫ |𝑁𝑢 | for some 𝑣 ∈ V

head
and𝑢 ∈ V

tail
. Tomake the training

and testing nodes more similar, we perform link dropouts on the

head nodes. Specifically, we randomly sample only 𝑘 neighbors

of each head node for aggregation, in order to simulate the tail

nodes. That is, given the sampled neighbors Ñ𝑣 of a head node 𝑣 ,

for one-hop aggregation we have

x𝑣 = Aggr({h𝑖 : 𝑖 ∈ Ñ𝑣}), ∀𝑣 ∈ V
head

. (6)

The idea of link dropouts draws an interesting parallel to Dropout-

Net [33]. In their approach designed for cold-start recommendation,

they eliminate the structural factor of users or items so as to simu-

late a cold-start scenario, forcing the model to fall back to user or

item contents. However, we do not assume any side information

like user contents, which means our problem is more challenging

and we can only drop the structural information partially.

4.2 Locality-aware few-shot regression tasks
When applying the regression model on all nodes, it ignores the

unique locality of each node. As the nodes reside across different

localities on the network, assuming one global model to fit all nodes

is unrealistic. At the other extreme, learning an individual model

for each node, including the popular pre-training and fine-tuning

strategy [6], is likely to cause severe overfitting due to the limited

structural information at the locality of each tail node.

4.2.1 Locality-aware support sets. To address the challenge of adapt-
ing to the locality of each node, we resort to the episodic meta-

learning paradigm [9, 28]. The framework consists of many similar-

natured learning tasks, divided into meta-training and meta-testing
tasks. While each task is an instance in the meta-learning process,

each task itself is a learning problem consisting of support and
query sets (representing the usual sense of training and testing

data, respectively). The goal of the meta-learning is to extract prior

knowledge common to all tasks in meta-training, such that the

knowledge can be quickly adapted to new tasks in meta-testing. In

other words, it learns how to learn a task in the form of a common

prior, instead of directly learning each task.

In our context, each task represents the unique locality of a

node. At the task level, given a query node, we aim to predict its

embedding vector after training on a set of support nodes. At the
meta-learning level, we learn a prior regression model 𝐹 parameter-

ized byΘ from the meta-training tasks where the query of each task

is a head node, and further adapt the prior to the learning of new

tasks in meta-testing where the query of each task is a tail node.

However, in traditional meta-learning tasks [9, 43], the support

set for a query is randomly sampled. In such random sampling,

the support set is not related to the query, and thus cannot reflect

the unique locality of each query node. To generate locality-aware

tasks, we propose to use the neighbors of the query node as the

support nodes. The assumption is that the localities of neighboring

nodes are similar, and thus training on these support nodes would

be also applicable to the query node which lies in the vicinity of

the support nodes. In other words, in each of our tasks, the support

and query nodes are coupled based on their locality.

4.2.2 Formulation of few-shot tasks. As the neighbor sets of head
and tail nodes differ vastly in size, a meta-training task with a head

node as the query has many support nodes, and a meta-testing task

with a tail node as the query has few support nodes. To make the

tasks more similar, we again adopt link dropouts by sampling only

𝑘 neighbors as the support set for meta-training tasks to simulate

meta-testing tasks. Thus, each task becomes a few-shot (up to 𝑘

shots) regression problem, to predict the embedding vector of a

query node from a few (up to 𝑘) support nodes.

We illustrate the task formulation with an example. As shown in

Fig. 3(a), assuming𝑘 = 3, 𝑣 and𝑢 is a head and tail node, respectively.

On the one hand, the head node 𝑣 will be used to formulate a meta-

training task: 𝑣 itself will be the query node, whereas we sample

𝑘 nodes from 𝑣 ’s neighbors N𝑣 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, to form the support

set Ñ𝑣 , say, |Ñ𝑣 | = {𝑎, 𝑏, 𝑒}. On the other hand, the tail node 𝑢 will

be used to formulate a meta-testing task: 𝑢 itself will be the query

node, whereas we simply take all of 𝑢’s neighborsN𝑢 = {𝑥,𝑦, 𝑧} as
the support set. More example tasks are illustrated in Fig. 3(b).



Formally, for each head node 𝑣 , we define a meta-training task

𝑇𝑣 = (𝑆𝑣, 𝑞𝑣) where 𝑆𝑣 = {(𝑖, h𝑖 ) : 𝑖 ∈ Ñ𝑣} is the support set,

and 𝑞𝑣 = (𝑣, h𝑣) is the query. For each tail node 𝑢, we define a

meta-testing task 𝑇𝑢 = (𝑆𝑢 , 𝑞𝑢 ) where 𝑆𝑢 = {(𝑖, h𝑖 ) : 𝑖 ∈ N𝑢 } is
the support set, and 𝑞𝑢 = (𝑢, ?) is the query, where the embedding

vector of 𝑢 is unknown and to be predicted. Thus, the set of all

meta-training tasks is Ttrain = {(𝑆𝑣, 𝑞𝑣) : 𝑣 ∈ V
head

}, and the set of

all meta-testing tasks is Ttest = {(𝑆𝑢 , 𝑞𝑢 ) : 𝑢 ∈ V
tail

},
In practice, we further ensure that all nodes in the support sets

are head nodes, so that they all associate with an oracle embedding

for adaptation to the regressionmodel. Specifically, inmeta-training,

we only sample head nodes from the neighbors as the support; in

meta-testing, we filter tail nodes from the support. In the rare case

that all of a tail node’s neighbors are also tail nodes, we will not

attempt to improve its original embedding.

4.3 Meta-learning of tail node embeddings
We employ MAML [9] for the meta-learning of tail node embed-

dings, which is capable of learning a prior Θ for any model using

gradient-based optimization. In our case, the prior is the embedding

regression model 𝐹 , parameterized by Θ. Different from the simple

pre-training of a model, the prior Θ is learned in such a way that Θ
can be quickly adapted to a new task by performing just one or a

few gradient updates on the support set of the new task. The model

Θ′
adapted from the prior Θ, is a local model for the query node in

the same task.

More specifically, in our meta-training, consider a task 𝑇𝑣 =

(𝑆𝑣, 𝑞𝑣). As show in Fig. 3(b) and (c), the prior Θ itself is not directly

updated or optimized by the support set 𝑆𝑣 . Instead, it will be

adapted by 𝑆𝑣 to produce a local model Θ′
𝑣 for the query 𝑣 , through

one or a few gradient updates w.r.t. 𝑆𝑣 ’s loss. The adapted local

model Θ′
𝑣 will be applied to the query 𝑣 to predict an embedding

vector ĥ𝑣 , so that the prior Θ can be updated by minimizing the

task loss, i.e., the distance between the predicted embedding ĥ𝑣 and
the oracle embedding h𝑣 of the query node 𝑣 .

Formally, let the loss of the prior on the support set 𝑆𝑣 be

𝐿𝑆𝑣 (Θ) =
∑

(𝑖,h𝑖 ) ∈𝑆𝑣
∥𝐹 (𝑖;Θ) − h𝑖 )∥2 . (7)

The priorΘwill be adapted by 𝑆𝑣 by one (or a few) gradient updates

to generate a local model Θ′
𝑣 for the task 𝑇𝑣 . That is,

Θ′
𝑣 = Θ − 𝛼

𝜕𝐿𝑆𝑣 (Θ)
𝜕Θ

, (8)

where 𝛼 is the learning rate for the adaptation. Afterwards, the

local model Θ′
𝑣 will be applied on the query 𝑣 , to calculate the task

loss using the query 𝑞𝑣 :

𝐿𝑞𝑣 (Θ′
𝑣) = ∥𝐹 (𝑣 ;Θ′

𝑣) − h𝑣 ∥2 . (9)

Subsequently, the prior Θ can be updated during meta-training by

minimize the query-based total loss of all meta-training tasks. Given

the set of meta-training tasks Ttrain, we optimize the following to

obtain the optimal prior:

argmin

Θ

∑
𝑇𝑣=(𝑆𝑣 ,𝑞𝑣 ) ∈Ttrain

𝐿𝑞𝑣

(
Θ − 𝛼

𝜕𝐿𝑆𝑣 (Θ)
𝜕Θ

)
(10)

Table 1: Summary of datasets.

# nodes # edges # node classes multi-label # tail nodes

Wiki 2,405 17,981 19 No 1,069

Flickr 80,513 5,899,882 195 Yes 9,367

Email 1,005 25,571 42 No 235

On the other hand, in our meta-testing, consider a task 𝑇𝑢 =

(𝑆𝑢 , 𝑞𝑢 ). The prior Θ, learned from meta-learning, will be adapted

on the support set 𝑆𝑢 to produce a local model Θ′
𝑢 in the same

way as Eq. (8). The local model Θ′
𝑢 will be simply applied on the

query 𝑢, which is a tail node, to predict a new embedding vector

ĥ𝑢 = 𝐹 (𝑢;Θ′
𝑢 ) as the output of meta-tail2vec.

Optimization and complexity. To adapt to the support set of each
task in Eq. (8), we apply the standard gradient descent with one or a

few steps. To minimize the meta-objective in Eq. (10), we adopt the

widely used Adam optimizer. As training is performed over mini-

batches of tasks, the time cost of our meta-training process depends

on the total number of tasks 𝑁 passed through, where each task

contains up to 𝑘 support nodes and the embedding of each node is

aggregated from𝑚-hop neighbors. Thus, the overall complexity is

𝑂 (𝑁𝑘𝑑𝑚), where 𝑑 is the average degree of nodes. Typically𝑚 is a

small constant such as 1 or 2, and 𝑘 is also small by the definition of

tail nodes. Furthermore, it is also common to perform neighborhood

sampling [12] during the𝑚-hop aggregation, and thus the average

degree 𝑑 is also effectively restricted to a constant.

5 EXPERIMENTS
In this section, we conduct node classification and link prediction

on three public benchmark datasets, and evaluate the performance

of our proposed meta-tail2vec.

5.1 Experimental settings
5.1.1 Datasets. We conducted experiments on three public datasets,

as follows. (1) Wiki [39] is a network of Wikipedia pages, where

each node is a page, and each edge represents the hyperlink between

pages. Each page belongs to one of the 19 categories. (2) Flickr [26]
is a network of users of the photo sharing service, where each node

is a user, and each edge represents the friendship between users.

Every user belongs to one or more interest groups, such as “scenic

photos". (3) Email [41] is an e-mail network between members of a

European research institution, where each node is a member, and

each edge represents the communication between members. Every

member belongs to one of the 42 departments. Their statistics are

summarized in Table 1. Note that we regarded nodes with 5 or fewer

links as the tail nodes, i.e., {𝑣 ∈ V : |N𝑣 | ≤ 5}.

5.1.2 Base embedding models. Our approach meta-tail2vec is flexi-

ble to work with any embedding model. We experimented with two

broad categories of base embedding models. First, we employed

classic network embedding and graph neural networks.

• DeepWalk [26]: a pioneering, widely adopted network em-

bedding model, which samples an equal number of paths

from each node, and feeds these paths into a skip-grammodel

to learn node embeddings.



• GraphSAGE [12]: a graph neural network that performs

graph convolutions to aggregate features from neighboring

nodes recursively. For node features, we use node embed-

ding vectors from DeepWalk and node degrees. We adopt its

self-supervised version to learn the initial base embeddings.

Second, we employed robust models designed for sparse networks.

• SDNE [34]: a deep network embedding model that is robust

for sparse networks, by incorporating global network struc-

tures in addition to local structures.

• ARGA [25]: an adversarially regularized graph autoencoder,

which achieves robust embedding by learning the data dis-

tribution of latent codes on the graph.

• DDGCN [3]: a graph convolutional network with a form

of dual dropouts at both the node and edge levels, to more

effectively reduce overfitting on sparse networks.

Setup and Parameters. To ensure the base models achieve their

respective optimal performance, we performed a grid search to

tune their parameters (optimal values in italics). For DeepWalk, we

searched the number of walks 𝛾 ∈ {5, 10, 20}, walk length 𝑡 ∈ {40,
100, 150} and window size𝑤 ∈ {3, 5}. For GraphSAGE, we adopted a
two-layer architecture, chose the aggregator from {mean, meanpool,

maxpool} and tuned the dimension of hidden layer over {32, 64, 128}.
For SDNE, we searched the weight of local structures (as opposed to

global structures) 𝛼 ∈ {50, 100, 150} and the weight of reconstruction
𝛽 ∈ {10, 30, 50}. For ARGA, we tuned the dimension of hidden layer

over {16, 32, 64}. For DDGCN, we tuned the dropout probability 𝑝 ∈
{0.1, 0.3, 0.5}, and dual-dropout coefficient 𝛼 ∈ {0.1, 1, 5}. The optimal

parameters found are generally consistent with the recommended

values in the literature. For all models, the dimension of embedding

vectors is set to 128.

5.1.3 Baselines for tail node refinement. We compared with a series

of baselines that are also designed to improve tail node embeddings.

• Biased walk: Since tail nodes are under-represented, we over-
sampled random walks starting from the tail nodes. This

method is only applicable to DeepWalk and GraphSAGE,

since the other base models do not utilize random walks.

• Additive [18] aggregates the embeddings of the neighbor-

ing nodes as the output embedding for a tail node. We also

compared to Additive-2 which aggregates the embeddings

of neighboring nodes within 2 hops.

• a la carte [16] is a further extension of the additive model,

with a transformation through an auxiliary regression task.

Similarly, we also compared to a la carte-2, which aggregate

the embedding of 2-hop neighbors.

• Nonce2vec [14] constructs a better initialization with the

additive vectors, and performs another round of training

using the corresponding base embedding model.

• Dropout: Inspired by DropoutNet [33], for each head node

we sampled only 𝑘 neighbors, which were further fed into

an auxiliary regression task.

Setup and Parameters. The goal is to predict new embedding

vectors for the tail nodes by meta-tail2vec and each baseline refine-

ment method, w.r.t. the initial embedding vectors from each of the

base embedding models.

For biasedwalk, we doubled the paths starting from the tail nodes

compared to the head nodes. For Additive, a la carte and Nonce2vec,

we used mean pooling as the aggregation function, which yields

better empirical performance than min or max pooling. For a la

carte and Dropout, the auxiliary regression tasks used the same

regression model in our approach. For Nonce2vec, with DeepWalk,

SDNE and ARGA as the base embedding model, the improved

initialization was directly used as a pre-training; with GraphSAGE

and DDGCN, the improved initialization was used as nodes’ initial

feature vectors.

For our method meta-tail2vec, we set 𝛼 , the local learning rate

of adapting to the support set to 0.01, and set the global meta-

learning rate to 0.001. Note that it is typical to employ a larger local

learning rate in order to achieve stable training [9, 43]. The number

of gradient updates during adaptation was set to 5, noting that few

updates such as 1 or 3 give very close results. In the regression

model 𝐹 , we set the size of the hidden layer of the MLP to 1024, and

aggregated nodes within 2 hops. We will also analyze the impact

of the number of hops in Sect. 5.3.

5.1.4 Downstream applications. We experimented with two down-

stream applications on the three datasets.

Node Classification. We carried out multi-class classification on

Wiki and Email where each node belongs to exactly one class, and

multi-label node classification on Flickr where each node can belong

to one or more classes. Specifically, we evaluated the classification

performance on the tail nodes, after training a logistic regression

classifier on the head nodes. The predicted embeddings of the tail

nodes and the oracle embeddings of the head nodes were used as

their features, respectively. We adopted the evaluation metrics of

micro-F and accuracy.

Link Prediction. For nodes with 2–6 links, we adopted the com-

mon leave-one-out strategy by first removing a random link from

each of them (which becomes a tail node with 5 or fewer links).

Our goal is to predict the removed link. On the partial network, we

constructed initial embedding vectors using each base embedding

model, and predicted new embedding vectors for the tail nodes

with our method and each baseline refinement method. For each

tail node, we treated the removed link as a positive candidate, and

randomly sampled five other non-linked nodes as negative candi-

dates. Link prediction was then formulated as a ranking problem:

given a tail node, we rank its candidates using a learning-to-rank

model [8] trained on the head nodes. Likewise, the predicted em-

beddings of the tail nodes and the oracle embeddings of the head

nodes were used as their features, respectively. We adopted the

evaluation metrics of mean reciprocal rank (MRR) and hit ratio at

top 1 (Hit@1).

5.2 Performance comparison
We present the performance of our meta-tail2vec and various base-

line refinement methods, w.r.t. each base embedding model. As

the primary goal of this paper is to improve tail node embeddings,

we mainly focus on comparing the performance on the tail nodes.

Nevertheless, to further demonstrate that head node embeddings

are not adversely impacted, we also investigate the performance

on the head nodes. Note that all results are averaged over 10 runs



Table 2: Performance of node classification w.r.t. classic base embedding models.

Base Biased walk Additive Additive-2 a la carte a la carte-2 Nonce2vec Dropout meta-tail2vec

Improv. over

Base 2
nd

best

DeepWalk as the base embedding model

Wiki

MicroF 44.27 ± 0.25 44.69 ± 0.31 45.32 ± 0.52 42.11 ± 0.76 23.65 ± 0.44 23.34 ± 0.47 44.97 ± 0.29 36.88 ± 0.65 49.10 ± 0.23 +10.9% +8.3%

Accuracy 46.68 ± 0.31 47.05 ± 0.17 47.18 ± 0.29 44.73 ± 0.53 24.17 ± 0.49 24.48 ± 0.42 47.11 ± 0.22 38.13 ± 0.57 50.70 ± 0.45 +8.6% +7.5%

Flickr

MicroF 33.48 ± 0.26 33.61 ± 0.39 34.43 ± 0.41 32.59 ± 0.17 31.89 ± 0.47 32.25 ± 0.35 33.83 ± 0.28 33.91 ± 0.22 36.31 ± 0.19 +8.5% +5.5%

Accuracy 32.44 ± 0.13 32.57 ± 0.19 33.29 ± 0.17 31.31 ± 0.24 32.13 ± 0.26 32.62 ± 0.31 33.01 ± 0.15 32.86 ± 0.09 35.28 ± 0.25 +8.8% +6.0%

Email

MicroF 51.32 ± 0.29 50.95 ± 0.24 52.50 ± 0.17 51.17 ± 0.23 17.88 ± 0.48 18.21 ± 0.52 51.84 ± 0.33 32.72 ± 0.45 55.26 ± 0.18 +7.7% +5.3%

Accuracy 54.41 ± 0.34 54.13 ± 0.22 55.38 ± 0.43 53.82 ± 0.36 21.06 ± 0.45 21.13 ± 0.37 54.79 ± 0.19 33.85 ± 0.51 57.78 ± 0.29 +6.2% +4.3%

GraphSAGE as the base embedding model

Wiki

MicroF 39.68 ± 0.24 40.07 ± 0.15 37.84 ± 0.31 35.96 ± 0.43 23.88 ± 0.47 22.52 ± 0.39 40.75 ± 0.33 19.78 ± 0.59 44.29 ± 0.31 +11.6% +8.7%

Accuracy 41.22 ± 0.19 41.39 ± 0.06 39.31 ± 0.26 36.59 ± 0.25 25.71 ± 0.36 24.94 ± 0.62 41.65 ± 0.28 24.73 ± 0.42 44.90 ± 0.12 +8.9% +7.8%

Flickr

MicroF 29.38 ± 0.32 28.75 ± 0.31 27.86 ± 0.14 23.69 ± 0.44 30.02 ± 0.17 29.67 ± 0.20 29.85 ± 0.12 28.75 ± 0.11 32.11 ± 0.41 +9.3% +7.0%

Accuracy 28.46 ± 0.08 27.52 ± 0.19 27.69 ± 0.31 22.82 ± 0.45 29.83 ± 0.22 28.18 ± 0.46 29.26 ± 0.31 28.78 ± 0.14 31.96 ± 0.35 +12.3% +7.1%

Email

MicroF 41.25 ± 0.17 41.07 ± 0.33 35.83 ± 0.31 34.19 ± 0.13 27.81 ± 0.44 26.97 ± 0.39 41.97 ± 0.24 23.47 ± 0.25 46.73 ± 0.37 +13.3% +11.3%

Accuracy 42.61 ± 0.31 42.20 ± 0.31 37.25 ± 0.16 35.13 ± 0.35 29.41 ± 0.46 27.16 ± 0.34 43.23 ± 0.30 25.84 ± 0.18 47.70 ± 0.46 +11.9% +10.3%

Table 3: Performance of link prediction w.r.t. classic base embedding models.

Base Biased walk Additive Additive-2 a la carte a la carte-2 Nonce2vec Dropout meta-tail2vec

Improv. over

Base 2
nd

best

DeepWalk as the base embedding model

Wiki

MRR 75.28 ± 0.37 75.13 ± 0.41 75.81 ± 0.62 74.89 ± 0.78 76.31 ± 0.25 76.14 ± 0.33 67.42 ± 0.87 77.06 ± 0.71 79.18 ± 0.52 +5.2% +2.8%

Hit@1 51.83 ± 0.42 52.04 ± 0.57 52.51 ± 0.67 51.48 ± 0.39 53.70 ± 0.61 53.59 ± 0.32 53.34 ± 0.49 54.19 ± 0.30 57.22 ± 0.46 +10.4% +5.6%

Flickr

MRR 50.05 ± 0.30 49.57 ± 0.19 49.80 ± 0.45 49.72 ± 0.41 50.36 ± 0.55 50.71 ± 0.65 50.83 ± 0.48 50.25 ± 0.59 52.18 ± 0.61 +4.3% +2.7%

Hit@1 25.32 ± 0.24 25.63 ± 0.55 26.10 ± 0.41 26.55 ± 0.62 26.07 ± 0.30 26.39 ± 0.58 26.67 ± 0.33 26.19 ± 0.44 28.11 ± 0.40 +11.0% +5.4%

Email

MRR 44.17 ± 0.35 44.58 ± 0.26 44.52 ± 0.68 44.96 ± 0.28 44.49 ± 0.50 45.11 ± 0.34 44.80 ± 0.15 45.33 ± 0.08 48.42 ± 0.55 +9.6% +6.8%

Hit@1 19.47 ± 0.38 19.96 ± 0.27 21.38 ± 0.15 21.66 ± 0.40 22.45 ± 0.58 22.63 ± 0.31 20.90 ± 0.44 23.02 ± 0.33 24.31 ± 0.46 +24.9% +5.6%

GraphSAGE as the base embedding model

Wiki

MRR 81.36 ± 0.14 82.01 ± 0.10 80.56 ± 0.45 80.39 ± 0.21 81.82 ± 0.53 80.94 ± 0.62 82.18 ± 0.64 82.52 ± 0.40 84.38 ± 0.61 +3.7% +2.3%

Hit@1 58.87 ± 0.52 58.39 ± 0.15 58.43 ± 0.61 58.92 ± 0.30 59.56 ± 0.29 59.34 ± 0.44 59.70 ± 0.37 59.93 ± 0.56 62.04 ± 0.68 +5.4% +3.5%

Flickr

MRR 55.83 ± 0.29 56.17 ± 0.36 55.04 ± 0.25 55.40 ± 0.58 56.28 ± 0.49 56.76 ± 0.40 56.31 ± 0.32 56.85 ± 0.71 58.15 ± 0.43 +4.2% +2.3%

Hit@1 34.59 ± 0.52 35.15 ± 0.47 33.79 ± 0.38 33.36 ± 0.40 35.22 ± 0.68 35.29 ± 0.64 34.97 ± 0.50 35.74 ± 0.31 36.92 ± 0.39 +6.7% +3.3%

Email

MRR 46.71 ± 0.45 46.24 ± 0.29 46.05 ± 0.25 46.68 ± 0.44 47.03 ± 0.53 46.92 ± 0.30 47.18 ± 0.19 46.37 ± 0.60 48.15 ± 0.44 +3.1% +2.1%

Hit@1 23.02 ± 0.23 22.73 ± 0.41 22.91 ± 0.44 22.65 ± 0.52 23.19 ± 0.39 23.14 ± 0.61 23.28 ± 0.43 23.07 ± 0.56 24.55 ± 0.70 +6.6% +5.4%

and reported with their standard deviations; best method appears

in bold, and the second best approach is underlined.

5.2.1 Comparison of tail node embeddings. We first study classic

base embedding models that are not specifically designed for robust-

ness on sparse networks, followed by robust base models designed

for sparse networks.

Classic base models. We report the performance of node classifi-

cation in Table 2 w.r.t. classic base embedding models DeepWalk

and GraphSAGE, respectively. On the one hand, our meta-tail2vec

achieves significant improvements over the base embedding meth-

ods consistently, by 7.7%–10.9% w.r.t. DeepWalk and 9.3%–13.3%

w.r.t. GraphSAGE in terms of MicroF. The results demonstrate that

tail node embedding is a critical problem to address, and our pro-

posed approach is indeed useful in refining the tail node embed-

dings. On the other hand, meta-tail2vec also outperforms other

refinement baselines, gaining performance lifts in the range of

5.3%–11.3% over the best baseline in terms of microF. These base-

lines are sub-optimal as they only assume one model for all tail

nodes, whereas meta-tail2vec can attribute its strong performance

to the locality adaptation to each node under a meta-learning frame-

work. In particular, the 2-hop variants of Additive and a la carte

are often worse than their 1-hop models, which may be caused

by noises from 2-hop nodes. However, our model also aggregates

2-hop nodes and attains better performance than its 1-hop version

(as we will see in Sect. 5.3), potentially due to the local adaptation

which can effectively filter noises at each locality.

We further report the performance of link prediction in Table 3

w.r.t. classic base embedding models. Similar conclusions can be

drawn, where meta-tail2vec outperforms the base models by 3.1%–

9.6% and the best baseline by 2.1%–6.8% in terms of MRR.

Robust basemodels for sparse networks. Wealso investigatewhether

meta-tail2vec can also improve base models designed for robustness

on sparse networks.

We report the performance of node classification in Table 4,

w.r.t. each of the base models SDNE, ARGA and DDGCN. While

these base models are intended to handle sparse networks, they aim

to increase the overall robustness of the learning process, and do not

explicitly improve the embedding of the most vulnerable tail nodes.

Thus, their performances on the tail nodes are not necessarily better



Table 4: Performance of node classification w.r.t. robust base
embedding models (MiF for MicroF; Acc for accuracy).

Base Additive Nonce2vec Dropout meta-tail2vec

SDNE as the base embedding model

Wiki

MiF 31.38 ± 0.34 34.46 ± 0.63 32.14 ± 0.75 34.69 ± 0.48 37.99 ± 0.83

Acc 34.10 ± 0.71 35.62 ± 0.28 34.59 ± 0.12 36.46 ± 0.43 38.80 ± 0.64

Flickr

MiF 34.74 ± 0.86 35.49 ± 0.47 34.73 ± 0.37 35.38 ± 0.35 38.50 ± 0.78

Acc 32.67 ± 0.32 34.72 ± 0.28 33.59 ± 0.73 34.64 ± 0.49 38.03 ± 0.66

Email

MiF 29.85 ± 0.48 31.07 ± 0.21 31.83 ± 0.46 34.50 ± 0.25 47.21 ± 0.72

Acc 32.90 ± 0.62 34.37 ± 0.27 33.79 ± 0.60 37.85 ± 0.47 51.70 ± 0.33

ARGA as the base embedding model

Wiki

MiF 32.22 ± 0.46 31.19 ± 0.23 32.47 ± 0.19 32.85 ± 0.23 33.51 ± 0.31

Acc 34.47 ± 0.52 33.84 ± 0.10 34.79 ± 0.21 35.22 ± 0.49 35.80 ± 0.23

Flickr

MiF 24.60 ± 0.15 23.69 ± 0.18 25.16 ± 0.20 24.71 ± 0.15 25.93 ± 0.25

Acc 22.81 ± 0.17 21.59 ± 0.11 24.26 ± 0.46 23.65 ± 0.39 25.37 ± 0.16

Email

MiF 24.38 ± 0.31 23.94 ± 0.47 24.97 ± 0.35 25.48 ± 0.53 26.11 ± 0.25

Acc 26.57 ± 0.43 25.69 ± 0.30 27.02 ± 0.37 27.54 ± 0.21 27.95 ± 0.16

DDGCN as the base embedding model

Wiki

MiF 29.49 ± 0.18 27.68 ± 0.58 31.20 ± 0.44 30.37 ± 0.35 33.02 ± 0.43

Acc 31.39 ± 0.25 30.82 ± 0.21 33.87 ± 0.75 32.69 ± 0.40 36.27 ± 0.41

Flickr

MiF 28.57 ± 0.47 26.92 ± 0.08 30.09 ± 0.35 29.17 ± 0.26 31.03 ± 0.52

Acc 25.90 ± 0.71 24.44 ± 0.12 26.76 ± 0.49 26.37 ± 0.25 28.38 ± 0.54

Email

MiF 38.95 ± 0.67 38.73 ± 0.55 39.62 ± 0.43 39.15 ± 0.40 41.83 ± 0.34

Acc 39.81 ± 0.56 38.20 ± 0.35 42.32 ± 0.63 41.69 ± 0.41 44.13 ± 0.73

than classic base models. Note that our approach meta-tail2vec is

embedding-agnostic, meaning that even for base models already

designed for sparse networks, we can still refine their tail node

embeddings, as demonstrated by the results that meta-tail2vec out-

performs the base embeddings by an average of 14.9% in terms of

MicroF on node classification. On the other hand, we also compare

meta-tail2vec to other baseline refinement methods. (Due to space

constraint, we only present the results of Addictive, Nonce2vec and

Dropout, which are generally the best baselines among all.) Again,

due to our locality-aware task formulation, the meta-learning strat-

egy is able to adapt to the locality of each tail node well, resulting

in an average performance lift of 8.5% in terms of MicroF compared

to the best baseline.

Furthermore, we report the performance of link prediction in

Table 5. We observe similar performance comparisons, where on

average meta-tail2vec outperforms the robust base models by 5.2%

and the best baseline by 2.0% in terms of MRR.

De
ep
W
alk

Ad
dit
ive

No
nc
e2
ve
c

Dr
op
ou
t

me
ta
-ta
il2
ve
c0.74

0.75

0.76

M
icr

oF

(a) Wiki

De
ep
W
alk

Ad
dit
ive

No
nc
e2
ve
c

Dr
op
ou
t

me
ta
-ta
il2
ve
c0.35

0.36

0.37

(b) Flickr

De
ep
W
alk

Ad
dit
ive

No
nc
e2
ve
c

Dr
op
ou
t

me
ta
-ta
il2
ve
c0.75

0.76

0.77

(c) Email

Figure 4: Performance of node classification on head nodes
w.r.t. DeepWalk as the base embedding model.

Table 5: Performance of link predictionw.r.t. robust base em-
bedding models (H@1 for hit@1).

Base Additive Nonce2vec Dropout meta-tail2vec

SDNE as the base embedding model

Wiki

MRR 72.25 ± 0.48 72.53 ± 0.30 74.44 ± 0.39 75.08 ± 0.65 76.97 ± 0.61

H@1 52.19 ± 0.27 51.94 ± 0.39 54.50 ± 0.61 55.21 ± 0.35 57.58 ± 0.74

Flickr

MRR 46.82 ± 0.20 47.09 ± 0.44 48.35 ± 0.51 48.17 ± 0.29 49.31 ± 0.46

H@1 26.23 ± 0.16 27.00 ± 0.33 28.82 ± 0.61 28.39 ± 0.10 29.26 ± 0.20

Email

MRR 34.02 ± 0.76 34.29 ± 0.51 36.87 ± 0.49 36.42 ± 0.55 39.55 ± 0.50

H@1 17.51 ± 0.24 18.65 ± 0.51 21.19 ± 0.40 20.88 ± 0.13 22.86 ± 0.63

ARGA as the base embedding model

Wiki

MRR 48.57 ± 0.40 46.49 ± 0.38 49.16 ± 0.45 50.27 ± 0.14 51.08 ± 0.20

H@1 41.40 ± 0.52 40.49 ± 0.07 41.67 ± 0.35 42.22 ± 0.10 43.73 ± 0.65

Flickr

MRR 35.52 ± 0.32 35.41 ± 0.72 35.69 ± 0.63 36.31 ± 0.28 36.87 ± 0.45

H@1 29.73 ± 0.34 28.86 ± 0.40 29.89 ± 0.62 30.51 ± 0.77 31.37 ± 0.29

Email

MRR 26.83 ± 0.29 25.89 ± 0.47 26.91 ± 0.18 26.22 ± 0.40 27.26 ± 0.55

H@1 16.51 ± 0.29 16.30 ± 0.42 17.22 ± 0.40 16.89 ± 0.31 17.87 ± 0.35

DDGCN as the base embedding model

Wiki

MRR 73.25 ± 0.49 74.10 ± 0.34 74.28 ± 0.15 74.92 ± 0.53 75.31 ± 0.67

H@1 51.28 ± 0.39 50.77 ± 0.21 51.86 ± 0.45 52.56 ± 0.32 53.30 ± 0.61

Flickr

MRR 52.17 ± 0.40 50.74 ± 0.51 52.23 ± 0.42 51.79 ± 0.60 52.49 ± 0.34

H@1 37.15 ± 0.38 35.82 ± 0.85 37.53 ± 0.42 37.16 ± 0.60 38.68 ± 0.63

Email

MRR 41.58 ± 0.45 40.83 ± 0.37 42.96 ± 0.39 42.81 ± 0.12 43.47 ± 0.18

H@1 27.35 ± 0.39 28.31 ± 0.63 28.58 ± 0.25 28.87 ± 0.30 29.22 ± 0.36

5.2.2 Comparison of head node embeddings. While our main goal

is to improve tail node embeddings, we further evaluate the per-

formance on the head nodes to validate that their embeddings

still remain competitive. In theory head node embeddings are not

changed in any way, since we only predict new embedding vec-

tors for tail nodes. However, the performance of head nodes on a

downstream application can be potentially improved, as training

the downstream model can still benefit from the improved quality

of tail nodes.

Thus, we further conducted an experiment on head node em-

beddings. We sampled and evaluated a test set comprising 10% of

the head nodes, and trained a model for each downstream task on

the other nodes, inclusive of the tail nodes and the remaining 90%

head nodes. We tabulate the results in Figs. 4 and 5 for node clas-

sification and link prediction, respectively. As hypothesized, both

meta-tail2vec and other baseline refinement approaches can slightly

outperform the base embedding model, due to the improved quality

of tail node embeddings in the downstream training data. However,

De
ep
W
alk

Ad
dit
ive

No
nc
e2
ve
c

Dr
op
ou
t

me
ta
-ta
il2
ve
c0.82

0.83

0.84

M
icr

oF

(a) Wiki

De
ep
W
alk

Ad
dit
ive

No
nc
e2
ve
c

Dr
op
ou
t

me
ta
-ta
il2
ve
c0.56

0.57

0.58

(b) Flickr

De
ep
W
alk

Ad
dit
ive

No
nc
e2
ve
c

Dr
op
ou
t

me
ta
-ta
il2
ve
c0.50

0.51

0.52

(c) Email

Figure 5: Performance of link prediction on head nodes
w.r.t. DeepWalk as the base embedding model.



full glob
al
fine

-tun
e

rand
-sup

p0.0
0.1
0.2
0.3
0.4
0.5
0.6

M
icr

oF

(a) Wiki

full glob
al
fine

-tun
e

rand
-sup

p0.0
0.1
0.2
0.3
0.4
0.5
0.6

(b) Flickr

full glob
al
fine

-tun
e

rand
-sup

p0.0
0.1
0.2
0.3
0.4
0.5
0.6

(c) Email

Figure 6: Ablation study of the meta-learning strategy on
node classification w.r.t. DeepWalk as the base model.

it is not surprising that the improvements are modest compared to

tail nodes, in the range of 0.3%–0.9% only. The reason is that the

head node embeddings remain unchanged and their performance

is only indirectly influenced by refined tail node embeddings. Nev-

ertheless, we validated the goal of significantly improving tail node

embeddings whilst head node embeddings remain robust.

5.3 Model analysis and discussion
5.3.1 Ablation study. We analyze the contribution of our approach

by an ablation study. Using DeepWalk as the base embedding model,

we compare the following four variants of meta-tail2vec: (1) full, the
full meta-tail2vec model; (2) global, only train one global embedding

regression model on the head nodes, and predict the embedding

vectors of all tail nodes with the same global model (equivalent

to the Dropout baseline); (3) fine-tune, fine-tune the pre-trained
global model on the support set of a tail node before predicting

its embedding vector; (4) rand-supp, the same approach as the full

model except the locality awareness, which samples random nodes

from the graph as the support sets.

Their performances are reported in Fig. 6. Among the four vari-

ants, we observe that the fine-tune model is only able to achieve

marginally better performance than the global model, as fine-tuning

on the small support set of a tail node can easily cause overfitting.

In particular, on the Flickr dataset, the fine-tune model is in fact

slightly worse than the global model due to overfitting. Next, the

rand-supp model performs the worst, implying that the locality-

aware task generation is critical for graph data. Finally, the full

model performs the best, demonstrating the effectiveness of our

locality-aware meta-learning approach.

1 2 3 4 5
Number of links

0.2

0.3

0.4

0.5

0.6

0.7

M
icr

oF

(a) Wiki

DeepWalk
meta-tail2vec

2 3 4 5
Number of links

0.2

0.3

0.4

0.5

0.6

0.7

(b) Flickr

DeepWalk
meta-tail2vec

1 2 3 4 5
Number of links

0.2

0.3

0.4

0.5

0.6

0.7

(c) Email

DeepWalk
meta-tail2vec

Figure 8: Impact of number of links on node classification
w.r.t. DeepWalk as the base model.

5.3.2 Visualization. We study how exactly meta-tail2vec updates

the base embeddings for the tail nodes. In particular, we visualize

the base and refined embeddings using the t-SNE algorithm.

We first showcase two base embedding models DeepWalk and

SDNE in Figs. 7(a) and 7(c), respectively. While both base models

can separate the head nodes (denoted by hollow dots) into rela-

tively well defined clusters corresponding to their ground truth

classes (as coded by different colors), they fail at the tail nodes

(denoted by solid dots). There is a significant mixture of tail nodes

from different classes at the center of the visualization for both

DeepWalk and SDNE, implying that they are not designed to work

well on tail nodes. On the other hand, we examine the refined em-

beddings by meta-tail2vec w.r.t. the two base models in Figs. 7(b)

and 7(d) respectively. As head nodes already have high-quality base

embeddings, the key is to improve the tail node embeddings. Our

approach specifically refines the tail nodes so that they now move

towards the cluster center of their class together with the head

nodes from the same class. The contrast with the base embeddings

conclude that our proposed approach is effective in learning tail

node embeddings.

5.3.3 Impact of tail node sparsity. We breakdown the performance

of tail nodes by their number of links. As shown in Fig. 8, the

performance improvement is observed across the spectrum for tail

nodes with between 1 and 5 links. Note that on the Flickr dataset,

all nodes have at least 2 links. The improvement is generally smaller

on nodes with only one link as expected, given that meta-tail2vec

is also constrained by the very limited structural information.

5.3.4 Impact of neighborhood hops. Next, we analyze the impact

of number of hops used for computing the input feature vector in

(a) DeepWalk (b) meta-tail2vec on DeepWalk (c) SDNE (d) meta-tail2vec on SDNE

Figure 7: Visualization of base embeddings by DeepWalk and SDNE, and their respective refinement by meta-tail2vec on the
Email dataset. Solid points denote tail nodes and hollow points denote head nodes. Each color represents one class.



1 2 3
Number of hops

0.1
0.2
0.3
0.4
0.5
0.6

M
icr

oF

(a) Wiki

1 2 3
Number of hops

0.1
0.2
0.3
0.4
0.5
0.6

(b) Flickr

1 2 3
Number of hops

0.1
0.2
0.3
0.4
0.5
0.6

(c) Email

Figure 9: Impact of number of hops on node classification

Eq. (5). The results across different number of hops are presented

in Fig. 9. In particular, aggregating from the 2-hop neighborhood

achieves optimal performance on all datasets. In particular, aggre-

gating from the 3-hop neighborhood results in decreased perfor-

mance due to more noises from the less relevant nodes.

6 CONCLUSION
In this paper, we investigated the problem of tail node embedding

on graphs. We first formulated the problem as an instance of few-

shot regression, and proposed a novel approach meta-tail2vec for
refining tail node embeddings. In particular, to personalize each

tail node given its local contexts, we designed a locality-aware task

generation strategy to capture the prior knowledge across nodes at

different localities. Finally, extensive experiments demonstrated the

promising performance of meta-tail2vec on both node classification

and link prediction.

ACKNOWLEDGEMENT
This research is supported by the National Research Foundation,

Singapore under its AI Singapore Programme (AISG Award No:

AISG-RP-2018-001). Any opinions, findings and conclusions or rec-

ommendations expressed in this material are those of the author(s)

and do not reflect the views of National Research Foundation, Sin-

gapore.

REFERENCES
[1] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.

Enriching word vectors with subword information. TACL 5 (2017), 135–146.

[2] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-

prehensive survey of graph embedding: Problems, techniques, and applications.

TKDE 30, 9 (2018), 1616–1637.

[3] Ruichu Cai, Xuexin Chen, Yuan Fang, Min Wu, and Yuexing Hao. 2020. Dual-

Dropout Graph Convolutional Network for Predicting Synthetic Lethality in

Human Cancers. Bioinformatics (2020).
[4] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph repre-

sentations with global structural information. In CIKM. 891–900.

[5] Jatin Chauhan, Deepak Nathani, and Manohar Kaul. 2020. Few-Shot Learning on

Graphs via Super-Classes based on Graph Spectral Measures. In ICLR.
[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

NAACL. 4171–4186.
[7] Yuan Fang, Wenqing Lin, Vincent W Zheng, Min Wu, Kevin Chen-Chuan Chang,

and Xiao-Li Li. 2016. Semantic proximity search on graphs with metagraph-based

learning. In ICDE. 277–288.
[8] Yuan Fang, Wenqing Lin, Vincent W Zheng, Min Wu, Jiaqi Shi, Kevin Chang,

and Xiaoli Li. 2019. Metagraph-based Learning on Heterogeneous Graphs. TKDE
(2019).

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-

learning for fast adaptation of deep networks. In ICML. 1126–1135.
[10] Victor Garcia and Joan Bruna. 2018. Few-shot learning with graph neural net-

works. In ICLR.
[11] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In SIGKDD. 855–864.

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS. 1024–1034.
[13] Xu Han, Hao Zhu, Pengfei Yu, ZiyunWang, Yuan Yao, Zhiyuan Liu, and Maosong

Sun. 2018. FewRel: A large-scale supervised few-shot relation classification

dataset with state-of-the-art evaluation. In EMNLP. 4803–4809.
[14] Aurélie Herbelot and Marco Baroni. 2017. High-risk learning: acquiring new

word vectors from tiny data. In EMNLP. 304–309.
[15] Ziniu Hu, Ting Chen, Kai-Wei Chang, and Yizhou Sun. 2019. Few-Shot Represen-

tation Learning for Out-Of-Vocabulary Words. In ACL. 4102–4112.
[16] Mikhail Khodak, Nikunj Saunshi, Yingyu Liang, Tengyu Ma, Brandon Stewart,

and Sanjeev Arora. 2018. A La Carte Embedding: Cheap but Effective Induction

of Semantic Feature Vectors. In ACL. 12–22.
[17] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph

convolutional networks. In ICLR.
[18] Angeliki Lazaridou, Marco Marelli, and Marco Baroni. 2017. Multimodal word

meaning induction from minimal exposure to natural text. Cognitive science 41
(2017), 677–705.

[19] Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. 2019.

MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation.

In SIGKDD. 1073–1082.
[20] Jingjing Li, Mengmeng Jing, Ke Lu, Lei Zhu, Yang Yang, and Zi Huang. 2019.

From zero-shot learning to cold-start recommendation. In AAAI. 4189–4196.
[21] Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019. Learn-

ing to propagate for graph meta-learning. In NeurIPS. 1037–1048.
[22] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang,

and Yi Yang. 2019. Learning to Propagate Labels: Transductive Propagation

Network for Few-shot Learning. In ICLR.
[23] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-

metric transitivity preserving graph embedding. In SIGKDD. 1105–1114.
[24] Feiyang Pan, Shuokai Li, Xiang Ao, Pingzhong Tang, and Qing He. 2019. Warm

Up Cold-start Advertisements: Improving CTR Predictions via Learning to Learn

ID Embeddings. In SIGIR. 695–704.
[25] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.

2018. Adversarially Regularized Graph Autoencoder for Graph Embedding. In

IJCAI. 2609–2615.
[26] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In SIGKDD. 701–710.
[27] Yuval Pinter, Robert Guthrie, and Jacob Eisenstein. 2017. Mimicking word em-

beddings using subword RNNs. In EMNLP. 102–112.
[28] Adam Santoro, Sergey Bartunov,MatthewBotvinick, DaanWierstra, and Timothy

Lillicrap. 2016. Meta-learningwithmemory-augmented neural networks. In ICML.
1842–1850.

[29] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for

few-shot learning. In NeurIPS. 4077–4087.
[30] Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved

Semantic Representations From Tree-Structured Long Short-Term Memory Net-

works. In ACL. 1556–1566.
[31] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale information network embedding. In WWW. 1067–1077.

[32] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.

Matching networks for one shot learning. In NeurIPS. 3630–3638.
[33] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. 2017. DropoutNet: Ad-

dressing cold start in recommender systems. In NeurIPS. 4957–4966.
[34] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embed-

ding. In SIGKDD. 1225–1234.
[35] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng

Zhang, Xing Xie, and Minyi Guo. 2018. GraphGAN: Graph representation learn-

ing with generative adversarial nets. In AAAI. 2508–2515.
[36] Jian Wei, Jianhua He, Kai Chen, Yi Zhou, and Zuoyin Tang. 2017. Collaborative

filtering and deep learning based recommendation system for cold start items.

Expert Systems with Applications 69 (2017), 29–39.
[37] Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang.

2018. One-shot relational learning for knowledge graphs. In EMNLP. 1980–1990.
[38] Carl Yang, Mengxiong Liu, Vincent W Zheng, and Jiawei Han. 2018. Node,

motif and subgraph: Leveraging network functional blocks through structural

convolution. In ASONAM. 47–52.

[39] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Chang. 2015.

Network representation learning with rich text information. In IJCAI. 2111–2117.
[40] Huaxiu Yao, Chuxu Zhang, YingWei, Meng Jiang, SuhangWang, Junzhou Huang,

Nitesh V Chawla, and Zhenhui Li. 2020. Graph Few-shot Learning via Knowledge

Transfer. In AAAI. 6656–6663.
[41] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. 2017. Local

Higher-Order Graph Clustering. In SIGKDD. 555–564.
[42] Chuxu Zhang, Huaxiu Yao, Chao Huang, Meng Jiang, Zhenhui Li, and Nitesh V

Chawla. 2020. Few-Shot Knowledge Graph Completion. In AAAI. 3041–3048.
[43] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji

Geng. 2019. Meta-GNN: On Few-shot Node Classification in GraphMeta-learning.

In CIKM. 2357–2360.


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Casting as Regression
	3.1 Problem statement
	3.2 Regression via oracle reconstruction

	4 Meta-Learned Few-Shot Regression
	4.1 Embedding regression model
	4.2 Locality-aware few-shot regression tasks
	4.3 Meta-learning of tail node embeddings

	5 Experiments
	5.1 Experimental settings
	5.2 Performance comparison
	5.3 Model analysis and discussion

	6 Conclusion
	References

